Skip to main content

Advertisement

Log in

Short time fourier transform with coefficient optimization for detecting salient regions in stereoscopic 3D images: GSDU

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In multimedia scenario, number of saliency detection designs has been portrayed for different intelligent applications regarding the accurate saliency detection like human visual system. More challenges exist regarding complexity in natural images and lesser scale prototypes in salient objects. In lots of the prevailing methods, the competency of identifying objects’ instances in the discovered salient regions is still not up to the mark. Hence it is planned to assist a new strategy by considering certain parameters of feature evaluation under optimization algorithms which diverts the new method of capturing the optimal parameters to acquire better outcomes. The given paper proposes a new saliency detection design that encompasses 2 phases like Feature extraction and depth saliency detection. In which Gaussian kernel model is processed for extracting the STFT features (Short-Time Fourier Transform), Texture features, and Depth features; and Gabor filter is used to get the depth saliency map. Here, the color space information is progressed under STFT model for extracting the STFT features. This is the major contribution, where all the STFT feature, Texture feature and Depth features are taken out to gain the depth saliency map. Additionally, this paper proffers a new optimization prototype that optimizes 2 coefficients namely feature difference amongst image patches from feature evaluation, and fine scale, by which more precise saliency detection outcomes can be attained through the proposed model. Subsequently, the proposed GSDU (Glowworm Swarm optimization with Dragonfly Update) contrasts its performance over other conventional methodologies concerning i) ROC (Receiver Operator Curve), ii) PCC (Pearson Correlation Coefficient), iii) KLD (Kullback Leibler Divergence) as well as iv) AUC (Area Under the Curve), and the efficiency of proposed model is proven grounded on higher accuracy rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ahn E et al (2017) Saliency-based lesion segmentation via background detection in Dermoscopic images. IEEE J Biomed Health Inform 21(6):1685–1693

    Article  Google Scholar 

  2. Cao X, Tao Z, Zhang B, Fu H, Feng W (2014) Self-adaptively weighted co-saliency detection via rank constraint. IEEE Trans Image Process 23(9):4175–4186

    MathSciNet  MATH  Google Scholar 

  3. Chen Z, Yuan J, Tan YP (Jan. 2013) Hybrid saliency detection for images. IEEE Signal Process Lett 20(1):95–98

    Article  Google Scholar 

  4. Chen HZ, Jing N, Wang J, Chen YG, Chen L (2014) A novel saliency detection method for lunar remote sensing images. IEEE Geosci Remote Sens Lett 11(1):24–28

    Article  Google Scholar 

  5. Cong R, Lei J, Zhang C, Huang Q, Cao X, Hou C (2016) Saliency detection for stereoscopic images based on depth confidence analysis and multiple cues fusion. IEEE Signal Process Lett 23(6):819–823

    Article  Google Scholar 

  6. Diao W, Sun X, Zheng X, Dou F, Wang H, Fu K (2016) Efficient saliency-based object detection in remote sensing images using deep belief networks. IEEE Geosci Remote Sens Lett 13(2):137–141

    Article  Google Scholar 

  7. Dinh CV, Leitner R, Paclik P, Loog M, Duin RPW (2011) SEDMI: saliency based edge detection in multispectral images. Image Vis Comput 29(8):546–556

    Article  Google Scholar 

  8. Fang Y, Chen Z, Lin W, Lin CW (2012) Saliency detection in the compressed domain for adaptive image retargeting. IEEE Trans Image Process 21(9):3888–3901

    Article  MathSciNet  MATH  Google Scholar 

  9. Fang Y, Wang J, Narwaria M, Le Callet P, Lin W (2014) Saliency detection for stereoscopic images. IEEE Trans Image Process 23(6):2625–2636

    Article  MathSciNet  MATH  Google Scholar 

  10. Fang Y, Wang J, Narwaria M, Le Callet P, Lin W (2014) Saliency detection for stereoscopic images. IEEE Trans Image Process 23(6):2625–2636

    Article  MathSciNet  MATH  Google Scholar 

  11. Gao F, Ma F, Wang J, Sun J, Yang E, Zhou H (2018) Visual saliency modeling for river detection in high-resolution SAR imagery. IEEE Access 6:1000–1014

    Article  Google Scholar 

  12. Guo C, Zhang L (2010) A novel multiresolution spatiotemporal saliency detection model and its applications in image and video compression. IEEE Trans Image Process 19(1):185–198

    Article  MathSciNet  MATH  Google Scholar 

  13. Harel J, Koch C, Perona P (2006) Graph-based visual saliency

  14. Ishikura K, Kurita N, Chandler DM, Ohashi G (2018) Saliency detection based on multiscale Extrema of local perceptual color differences. IEEE Trans Image Process 27(2):703–717

    Article  MathSciNet  MATH  Google Scholar 

  15. Itti L, Koch C, Niebur E (1998) A model of saliency-based visual attention for rapid scene analysis. IEEE Trans Pattern Anal Mach Intell 20(11):1254–1259

    Article  Google Scholar 

  16. Jafari M, Chaleshtari MHB (2017) Using dragonfly algorithm for optimization of orthotropic infinite plates with a quasi-triangular cut-out. Eur J Mech A/Solids 66:1–14

    Article  MathSciNet  MATH  Google Scholar 

  17. Li Z, Itti L (2011) Saliency and gist features for target detection in satellite images. IEEE Trans Image Process 20(7):2017–2029

    Article  MathSciNet  MATH  Google Scholar 

  18. Shiqi Li, Cheng Zeng, Shiping Liu, Yan Fu, “Merging fixation for saliency detection in a multilayer graph”, Neurocomputing, Vol 230, pp. 173–183, 22 2017

  19. Ma L, Tian J, Yu W (2010) Visual saliency detection in image using ant colony optimisation and local phase coherence. Electron Lett 46(15):1066–1068

    Article  Google Scholar 

  20. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61

    Article  Google Scholar 

  21. Pedersen MEH, Chipperfield AJ (2010) Simplifying particle swarm optimization. Appl Soft Comput 10:618–628

    Article  Google Scholar 

  22. Quan H, Feng S, Chen B (2017) Two birds with one stone: a unified approach to saliency and co-saliency detection via multi-instance learning. IEEE Access 5:23519–23531

    Article  Google Scholar 

  23. Ren Z, Gao S, Chia LT, Rajan D (2013) Regularized feature reconstruction for spatio-temporal saliency detection. IEEE Trans Image Process 22(8):3120–3132

    Article  Google Scholar 

  24. Tang L, Wu Q, Li W, Liu Y (2018) Deep saliency quality assessment network with joint metric. IEEE Access 6:913–924

    Article  Google Scholar 

  25. Wang Z et al (2018) Visual attention-based target detection and discrimination for high-resolution SAR images in complex scenes. IEEE Trans Geosci Remote Sens 56(4):1855–1872

    Article  Google Scholar 

  26. Yang J, Wang Y, Wang G, Li M (2017) Salient object detection based on global multi-scale superpixel contrast. IET Computer Vision 11(8):710–716

    Article  Google Scholar 

  27. Zhang L, Zhang J (2017) A new saliency-driven fusion method based on complex wavelet transform for remote sensing images. IEEE Geosci Remote Sens Lett 14(12):2433–2437

    Article  Google Scholar 

  28. Changqing Zhang, Zhiqiang Tao, Xingxing Wei, Xiaochun Cao, “A flexible framework of adaptive method selection for image saliency detection,” Pattern Recogn Lett, Vol 63, pp. 66–70, 1 2015

  29. Zhang Y, Zhang F, Guo L (2016) Saliency detection by selective colour features. Neurocomputing 203:34–40

    Article  Google Scholar 

  30. Zhou C, Liu C (2014) Co-segmentation of multiple similar images using saliency detection and region merging. IET Comput Vis 8(3):254–261

    Article  Google Scholar 

  31. Zhou Y, Li X, Liang G (2013) A differential evolution algorithm with intersect mutation operator. Appl Soft Comput 13:390–401

    Article  Google Scholar 

  32. Zhou Y, Guo Z, Wang Y, Zhao G (2013) A glowworm swarm optimization algorithm based tribes. Appl Math Inform Sci 7(2L):537–541

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh Y.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rakesh Y, Sri Rama Krishna K Short time fourier transform with coefficient optimization for detecting salient regions in stereoscopic 3D images: GSDU. Multimed Tools Appl 79, 8801–8824 (2020). https://doi.org/10.1007/s11042-018-6686-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-018-6686-x

Keywords

Navigation