Skip to main content
Log in

Texture pattern classification based on probability density function estimation of the image spatial structure feature with symmetrical weibull distribution model

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Automatic texture pattern classification (ATPC) has long been an essential issue in computer vision. However, ATPC is still a challenging task since texture is a subjective conception, which is difficult to be expressed concisely by the existing computational models. The visual appearance of the imaged texture pattern (TP) visually depends on the random organization of local homogeneous fragments (LHFs) in it. Hence, it is essential to investigate the latent statistical distribution (LSD) behavior of LHFs for the texture image spatial structural feature (TISSF) characterization and expression to achieve a good performance of ATPC. We presented a probability density function estimation (PDFE)-based ATPC scheme, termed PDFE-ATPC. We demonstrated the Weibull distribution (WD) behavior of LHFs by the sequential fragmentation theory to explain the LSD of the TISSFs. To obtain the multiscale and multi-orientation detail expression of the TISSFs, we introduced an oriented Gaussian derivative filter (OGDF)-based TISSF characterization method, including the steerable isotropic Gaussian derivative filters (SIGDFs) and the oriented anisotropic Gaussian Derivative filters (OAGDFs). Successively, the LSDs of the filter responses were characterized omnidirectionally by a symmetrical WD model (SWDM) and the SWDM-based TISSF parameters, demonstrated to be directly related to the human vision perception (HVP) system, were extracted and applied to the ATPC with a spline regression-based classifier. Effectiveness of the proposed PDFE-ATPC method was verified by extensive experiments on three different texture image databases and compared with four commonly-used statistics-based texture classification methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abdelmounaime S, DongChen H (2013) New brodatz-based image databases for grayscale color and multiband texture analysis, vol 2013. ISRN Machine Vision

  2. Brown WK (1989) A theory of sequential fragmentation and its astronomical applications. J Astrophys Astron 10:89–112

    Article  Google Scholar 

  3. Brown M, Wohletz KH (1995) Derivation of the Weibull distribution based on physical principles and its connection to the Rossin-Rammler and lognormal distributions. J Appl Phys 78:2758–2763

    Article  Google Scholar 

  4. Chan CH, Pang GKH (2002) Fabric defect detection by Fourier analysis. IEEE Trans Ind Appl 36:1267–1276

    Article  Google Scholar 

  5. Cremers D, Rousson M, Deriche R (2007) A review of statistical approaches to level set segmentation: integrating color, texture, motion and shape. Int J Comput Vis 72:195–215

    Article  Google Scholar 

  6. Dana KJ, Van Ginneken B, Nayar SK, Koenderink JJ (1999) Reflectance and texture of real-world surfaces. ACM Transactions On Graphics (TOG) 18:1–34

    Article  Google Scholar 

  7. Dash JK, Mukhopadhyay S, Gupta RD (2017) Multiple classifier system using classification confidence for texture classification. Multimedia Tools and Applications 76:2535–2556

    Article  Google Scholar 

  8. Debure K, Kubota T (2008) Multi-Resolution Texture Segmentation and Autoregressive Synthesis for Wavelet-Based Image Coding

  9. Durgamahanthi V, Rangaswami R, Gomathy C, Victor ACJ, Durgamahanthi V, Rangaswami R, Gomathy C, Victor ACJ (2017) Texture analysis using wavelet-based multiresolution autoregressive model: application to brain cancer histopathology. Journal of Medical Imaging & Health Informatics 7:1188–1195

    Article  Google Scholar 

  10. Freeman WT, Adelson EH (1991) The design and use steerable filter. IEEE Trans Pattern Anal Mach Intell 13:891–906

    Article  Google Scholar 

  11. Fujii K, Sugi S, Ando Y (2003) Textural properties corresponding to visual perception based on the correlation mechanism in the visual system. Psychol Res 67:197–208

    Article  Google Scholar 

  12. Geusebroek JM, Smeulders AWM (2002) A Physical Explanation for Natural Image Statistics, Dutch Society for Pattern Recognition & Image Processing 47–52

  13. Geusebroek J-m, Smeulders AWM (2005) A six stimulus theory for stochastic texture. Int J Comput Vis 62:7–16

    Article  Google Scholar 

  14. Geusebroek J-M, Smeulders AWM, Weijer JVD (2003) Fast Anisotropic Gauss Filtering. IEEE Trans Image Process 12:938–942

    Article  MathSciNet  Google Scholar 

  15. Guo Z, ZhaNG L, Zhang D (2010) A completed modeling of local binary pattern operator for texture classification. IEEE Trans Image Process 19:1657–1663

    Article  MathSciNet  Google Scholar 

  16. Haralick RM, Shanmugam K, Dinstein IH (1973) Textural features for image classification, Systems, Man and Cybernetics, IEEE Transactions on, 610–621

    Article  Google Scholar 

  17. Hou X, Zhang T, Xiong G, Zhang Y, Ping X (2014) Image resampling detection based on texture classification. Multimedia Tools & Applications 72:1681–1708

    Article  Google Scholar 

  18. Jacob M, Unser M (2004) Design of Steerable Filters for Feature Detection Using Canny-Like Criteria. IEEE Trans Pattern Anal Mach Intell 26:1007–1019

    Article  Google Scholar 

  19. Jiang X, Sun T, Wang S (2011) An automatic video content classification scheme based on combined visual features model with modified DAGSVM. Multimedia Tools & Applications 52:105–120

    Article  Google Scholar 

  20. Kiechle M, Storath M, Weinmann A, Kleinsteuber M (2018) Model-based learning of local image features for unsupervised texture segmentation. IEEE Trans Image Process PP:1–1

    MathSciNet  MATH  Google Scholar 

  21. Kuffer M, Pfeffer K, Sliuzas R, Baud I (2016) Extraction of Slum Areas From VHR Imagery Using GLCM Variance. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing 9:1830–1840

    Article  Google Scholar 

  22. Lagrange A, Fauvel M, Grizonnet M (2017) Large-scale feature selection with Gaussian mixture models for the classification of high dimensional remote sensing images. IEEE Transactions on Computational Imaging 3:230–242

    Article  MathSciNet  Google Scholar 

  23. Lazebnik S, Schmid C, Ponce J (2005) A sparse texture representation using local affine regions. IEEE Trans Pattern Anal Mach Intell 27:1265–1278

    Article  Google Scholar 

  24. Li Z, Shi W, Zhang H, Hao M (2017) Change Detection Based on Gabor Wavelet Features for Very High Resolution Remote Sensing Images. IEEE Geoscience & Remote Sensing Letters PP:1–5

    Google Scholar 

  25. Liu L, Fieguth PW (2012) Texture classification from random features. IEEE Trans Pattern Anal Mach Intell 34:574–586

    Article  Google Scholar 

  26. Liu J, Gui W, Tang Z, Hu H, Zhu J (2013) Machine vision based production condition classification and recognition for mineral flotation process monitoring. International Journal of Computational Intelligence Systems 6:969–986

    Article  Google Scholar 

  27. Liu J, Gui W, Tang Z, Yang C, Zhu J, Li J (2013) Recognition of the operational statuses of reagent addition using dynamic bubble size distribution in copper flotation process. Miner Eng 45:128–141

    Article  Google Scholar 

  28. Liu Y, Nie L, Liu L, Rosenblum DS (2016) From action to activity: Sensor-based activity recognition. Neurocomputing 181:108–115

    Article  Google Scholar 

  29. Liu J, Tang Z, Chen Q, Xu P, Liu W, Zhu J (2016) Toward Automated Quality Classification via Statistical Modeling of Grain Images for Rice Processing Monitoring. International Journal of Computational Intelligence Systems 9:120–132

    Article  Google Scholar 

  30. Liu J, Tang Z, Gui W, Liu W, Xu P, Zhu J (2016) Application of statistical modeling of image spatial structures to automated visual inspection of product quality. J Process Control 44:23–40

    Article  Google Scholar 

  31. Liu J, Tang Z, Xu P, Liu W, Jin Z, Zhu J (2016) Quality-Related Monitoring and Grading of Granulated Products by Weibull-Distribution Modeling of Visual Images with Semi-Supervised Learning. Sensors 16:998

    Article  Google Scholar 

  32. Liu J, Tang Z, Xu P, Liu W, Zhang J, Zhu J (2016) Quality-related monitoring and grading of granulated products by weibull-distribution modeling of visual images with semi-supervised learning. Sensors 16:998

    Article  Google Scholar 

  33. Liu J, Tang Z, Zhang J, Chen Q, Xu P, Liu W (2016) Visual Perception-Based Statistical Modeling of Complex Grain Image for Product Quality Monitoring and Supervision on Assembly Production Line. PLoS One 11:e0146484

    Article  Google Scholar 

  34. Lopez-Molina C, Vidal-Diez de Ulzurrun G, Baetens JM, Van den Bulcke J, De Baets B (2015) Unsupervised ridge detection using second order anisotropic Gaussian kernels. Signal Process 116:55–67

    Article  Google Scholar 

  35. Muhammad G, Al-Hammadi MH, Hussain M, Bebis G (2014) Image forgery detection using steerable pyramid transform and local binary pattern. Mach Vis Appl 25:985–995

    Article  Google Scholar 

  36. Prats-Montalbán JM, Ferrer A (2014) Statistical process control based on Multivariate Image Analysis: A new proposal for monitoring and defect detection. Comput Chem Eng 71:501–511

    Article  Google Scholar 

  37. Qi X, Li CG, Zhao G, Hong X, Pietikäinen M (2016) Dynamic texture and scene classification by transferring deep image features. Neurocomputing 171:1230–1241

    Article  Google Scholar 

  38. Seetharaman K (2015) Image retrieval based on micro-level spatial structure features and content analysis using Full Range Gaussian Markov Random Field model. Eng Appl Artif Intell 40:103–116

    Article  Google Scholar 

  39. Shotton J, Winn J, Rother C, Criminisi A (2009) TextonBoost for Image Understanding: Multi-Class Object Recognition and Segmentation by Jointly Modeling Texture, Layout, and Context. Int J Comput Vis 81:2–23

    Article  Google Scholar 

  40. Shui P-L, Zhang W-C (2012) Noise-robust edge detector combining isotropic and anisotropic Gaussian kernels. Pattern Recogn 45:806–820

    Article  Google Scholar 

  41. Susan S, Sharma M (2017) Automatic texture defect detection using Gaussian mixture entropy modeling. Neurocomputing 239:232–237

    Article  Google Scholar 

  42. Unser M (2009) Sum and difference histograms for texture classification, IEEE Transactions on Pattern Analysis & Machine Intelligence, PAMI. 8:118–125

    Article  Google Scholar 

  43. Varma M, Zisserman A (2005) A Statistical Approach to Texture Classi cation from Single Images. Int J Comput Vis 62:1–34

    Article  Google Scholar 

  44. Xiang S, Nie F, Zhang C (2010) Semi-supervised classification via local spline regression. IEEE Trans Pattern Anal Mach Intell 32:2039–2053

    Article  Google Scholar 

  45. Xiang S, Nie F, Zhang C, Zhang C (2009) Interactive natural image segmentation via spline regression. IEEE Trans Image Process 18:1623–1632

    Article  MathSciNet  Google Scholar 

  46. Yang G, Zhang Y, Yang J, Ji G, Dong Z, Wang S, Feng C, Wang Q (2016) Automated classification of brain images using wavelet-energy and biogeography-based optimization. Multimedia Tools & Applications 75:15601–15617

    Article  Google Scholar 

  47. Zhang J, Tang Z, Liu J, Tan Z, Xu P (2016) Recognition of flotation working conditions through froth image statistical modeling for performance monitoring. Miner Eng 86:116–129

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Joint Fund of National Natural Science Foundation of China (NSFC) and Guangdong Provincial Government under grant U1701261, NSFC nos. 61501183, 61771492, the Young Teacher Foundation of Hunan Normal University under grant no. 11405 and partially supported by the MOE key laboratory of image processing and intelligence control under grant IPIC2017-03.

The authors would like to thank the editor and the four anonymous reviewers for their insightful and constructive comments and suggestions that helped to improve the quality of this manuscript. The authors would also like to thank Dr. Jean Paul NIYOYITA, who is working with the College of Science and Technology of University of Rwanda, for helping us to proofread the revised typescript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinping Liu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1. Details of the SWDM parameter estimation

The two expression in (7), the first-order derivates of \( \log\;\tilde{L}\left(\mathbf{X}|\boldsymbol{\uptheta} \right) \) over the model parameter vector θ and the Hessian matrix H, are given by,

$$ \nabla \log\;\tilde{L}\left(\mathbf{X}|\boldsymbol{\uptheta} \right)=\left(\begin{array}{l}\frac{1}{\beta^{\lambda }}\left(\sum \limits_{\begin{array}{l}i=1\\ {}{x}_i<\mu \end{array}}^N{\left(\mu -{x}_i\right)}^{\lambda }-\sum \limits_{\begin{array}{l}i=1\\ {}{x}_i\ge \mu \end{array}}^N{\left({x}_i-\mu \right)}^{\lambda}\right)\\ {}\frac{1}{\lambda}\left[\begin{array}{l}\sum \limits_{i=1}^N\left({\left|\frac{x_i-\mu }{\beta}\right|}^{\lambda}\log |\frac{x_i-\mu }{\beta }|\right)-\\ {}N-\frac{N\log \lambda }{\lambda }-\frac{N}{\lambda}\boldsymbol{\Phi} \left(\frac{1}{\lambda}\right)\end{array}\right]\\ {}\frac{N}{\beta }-\frac{1}{\beta}\sum \limits_{i=1}^N{\left|\frac{x_i-\mu }{\beta}\right|}^{\lambda}\end{array}\right) $$
(32)
$$ \mathbf{H}=\left(\begin{array}{lll}\frac{\lambda }{\beta^{\lambda }}\left(\begin{array}{l}\sum \limits_{\begin{array}{l}i=1\\ {}{x}_i<\mu \end{array}}^N{\left(\mu -{x}_i\right)}^{\lambda -1}+\\ {}\sum \limits_{\begin{array}{l}i=1\\ {}{x}_i\ge \mu \end{array}}^N{\left({x}_i-\mu \right)}^{\lambda -1}\end{array}\right)& \frac{1}{\beta^{\lambda }}\left(\begin{array}{l}\sum \limits_{\begin{array}{l}i=1\\ {}{x}_i<\mu \end{array}}^N{\left(\mu -{x}_i\right)}^{\lambda}\log \frac{\mu -{x}_i}{\beta }-\\ {}\sum \limits_{\begin{array}{l}i=1\\ {}{x}_i\ge \mu \end{array}}^N{\left({x}_i-\mu \right)}^{\lambda}\log \frac{x_i-\mu }{\beta}\end{array}\right)& \frac{-\lambda }{\beta^{\lambda +1}}\left(\begin{array}{l}\sum \limits_{\begin{array}{l}i=1\\ {}{x}_i<\mu \end{array}}^N{\left(\mu -{x}_i\right)}^{\lambda }-\\ {}\sum \limits_{\begin{array}{l}i=1\\ {}{x}_i\ge \mu \end{array}}^N{\left({x}_i-\mu \right)}^{\lambda}\end{array}\right)\\ {}\frac{1}{\beta^{\lambda }}\left(\begin{array}{l}\sum \limits_{\begin{array}{l}i=1\\ {}{x}_i<\mu \end{array}}^N{\left(\mu -{x}_i\right)}^{\lambda}\log \frac{\mu -{x}_i}{\beta }-\\ {}\sum \limits_{\begin{array}{l}i=1\\ {}{x}_i\ge \mu \end{array}}^N{\left({x}_i-\mu \right)}^{\lambda}\log \frac{x_i-\mu }{\beta}\end{array}\right)& \left(\begin{array}{l}-\frac{\log \mid \frac{x_i-\mu }{\beta}\mid }{\lambda^2}\sum \limits_{i=1}^N{\left|\frac{x_i-\mu }{\beta}\right|}^{\lambda }+\\ {}\frac{\sum \limits_{i=1}^N{\left|\frac{x_i-\mu }{\beta}\right|}^{\lambda }{\log}^2\mid \frac{x_i-\mu }{\beta}\mid }{\lambda }+\\ {}\frac{N}{\lambda^2}\left(\log \lambda -1+\boldsymbol{\Phi} \left(\frac{1}{\lambda}\right)-\frac{1}{\lambda}\boldsymbol{\uppsi} \left(\frac{1}{\lambda}\right)\right)\end{array}\right)& \frac{-\lambda }{\beta^{\lambda +1}}\left(\begin{array}{l}\sum \limits_{\begin{array}{l}i=1\\ {}{x}_i<\mu \end{array}}^N{\left(\mu -{x}_i\right)}^{\lambda }-\\ {}\sum \limits_{\begin{array}{l}i=1\\ {}{x}_i\ge \mu \end{array}}^N{\left({x}_i-\mu \right)}^{\lambda}\end{array}\right)\\ {}\frac{-\lambda }{\beta^{\lambda +1}}\left(\begin{array}{l}\sum \limits_{\begin{array}{l}i=1\\ {}{x}_i<\mu \end{array}}^N{\left(\mu -{x}_i\right)}^{\lambda }-\\ {}\sum \limits_{\begin{array}{l}i=1\\ {}{x}_i\ge \mu \end{array}}^N{\left({x}_i-\mu \right)}^{\lambda}\end{array}\right)& -\frac{1}{\beta}\sum \limits_{i=1}^N{\left|\frac{x_i-\mu }{\beta}\right|}^{\lambda}\log \mid \frac{x_i-\mu }{\beta}\mid & -\frac{N}{\beta^2}+\frac{\lambda +1}{\beta^{\lambda +2}}\sum \limits_{i=1}^N{\left|{x}_i-\mu \right|}^{\lambda}\end{array}\right) $$
(33)

where ψ(z) is the trigamma function, \( \boldsymbol{\uppsi} (z)=\frac{d^2\boldsymbol{\Gamma} (z)}{d{z}^2} \).

Apparently, the convergence rate of the SWDM parameter estimation iteration process is inevitably related to the initial model parameter θ(0). To enhance the estimation process, the initial model parameter θ(0) is assigned as the empirical value which is close to the extremum point, namely, θ(0) = (μ(0), λ(0), β(0))T, where

$$ \Big\{{\displaystyle \begin{array}{l}{\mu}^{(0)}= median\left(\mathbf{X}\right)\\ {}{\lambda}^{(0)}=2\left(2\frac{\frac{1}{N}\sum \limits_{i=1}^N{\left({x}_i-\overline{x}\right)}^4}{\frac{1}{N}\sum \limits_{i=1}^N{\left({x}_i-\overline{x}\right)}^2}-3\right)/\left(\frac{\frac{1}{N}\sum \limits_{i=1}^N{\left({x}_i-\overline{x}\right)}^4}{\frac{1}{N}\sum \limits_{i=1}^N{\left({x}_i-\overline{x}\right)}^2}-3\right)+1\\ {}{\beta}^{(0)}={\left(\sum \limits_{i=1}^N{x}_i-\frac{{\left({\mu}^{(0)}\right)}^{\lambda^{(0)}}}{N}\right)}^{\lambda^{(0)}}\end{array}} $$
(34)

However, it was revealed that computing the inverse of the Hessian matrix is a time-consuming task. Actually, the location parameter μ is near the mean value of the sampling points and we can find the relation of the shape parameter λ and scale parameter β by the partial derivative of the LLF equation

$$ \frac{\partial }{\mathrm{\partial \upbeta }}\log \mathrm{L}\left(\mathbf{X}|\boldsymbol{\uptheta} \right)=-\frac{N}{\upbeta}+\frac{1}{\upbeta}\sum \limits_{i=1}^N{\left|\frac{x_i-\upmu}{\upbeta}\right|}^{\uplambda}=0 $$
(35)

and we can obtain,

$$ \beta ={\left(\sum \limits_{i=1}^N{\left|{x}_i-\mu \right|}^{\lambda }/N\right)}^{\frac{1}{\lambda }} $$
(36)

Hence, we subtract a mean value from each sampling points and get a new corrected sample set \( \tilde{\mathbf{X}} \), which still obeys the SWD model with the same scale parameter and shape parameter but symmetric around the y-axis. So, if we make a rough estimation of the location parameter with the mean value of the samples and take into account the relation equation of the scale parameter and shape parameter, respectively, substituting the formula (36) into formula,

$$ \frac{\partial }{\mathrm{\partial \uplambda }}\log \mathrm{L}\left(\mathbf{X}|\upmu, \upbeta, \uplambda \right)=\frac{1}{\uplambda^2}\left[N\uplambda +N\log \uplambda +N\boldsymbol{\Phi} \left(\frac{1}{\uplambda}\right)\right]-\frac{1}{\uplambda}\sum \limits_{i=1}^N\left[{\left|\frac{x_i-\upmu}{\upbeta}\right|}^{\lambda}\log |\frac{x_i-\upmu}{\upbeta}\right]=0 $$
(37)

We can achieve an uniparameter equation as follows,

$$ 1+\frac{\log \lambda }{\lambda }+\frac{1}{\lambda}\boldsymbol{\Phi} \left(\frac{1}{\lambda}\right)-\frac{1}{\lambda}\left(\sum \limits_{i=1}^N\frac{{\left|{\tilde{x}}_i\right|}^{\lambda }}{\sum \limits_{i=1}^N{\left|{\tilde{x}}_i\right|}^{\lambda }}\log \frac{N\mid {\tilde{x}}_i\mid }{\sum \limits_{i=1}^N{\left|{\tilde{x}}_i\right|}^{\lambda }}\right)=0 $$
(38)

where \( {\tilde{x}}_i \) represents the samples in \( \tilde{\mathbf{X}} \). We solve this univariable Eq. (38) by the Newton-Raphson scheme and then with formula (36), we can obtain the scale parameter conveniently.

Appendix 2. Derivation of the weighting coefficient α m, i of the SIGDF

As stated in [10, 18, 29, 32], the design of a steerable SIGDF can be explained easily in the Fourier domain. We transform the rotated filter Gκ, σ(XRθ) into the Fourier domain to facilitate computing, and we can then obtain [18]:

$$ {\displaystyle \begin{array}{c}\Im \left({G}_{K,\sigma}\left(\mathbf{X}{\mathbf{R}}_{\theta}\right)\right)=\sum \limits_{m=1}^k\sum \limits_{i=0}^m{k}_{m,i}{\left(j{\omega}_x\cos \theta +j{\omega}_y\sin \theta \right)}^i{\left(-j{\omega}_x\sin \theta +j{\omega}_y\cos \theta \right)}^{m-i}{G}_{\sigma}\left({\omega}_{x,}{\omega}_y\right)\\ {}=\sum \limits_{m=1}^k\sum \limits_{i=0}^m{k}_{m,i}\left\{\sum \limits_{t=0}^i{C}_i^t{\left(j{\omega}_x\cos \theta \right)}^t{\left(j{\omega}_y\sin \theta \right)}^{i-t}\right\}\left\{\sum \limits_{l=0}^{m-i}{C}_{m-i}^l{\left(-j{\omega}_x\sin \theta \right)}^l{\left(j{\omega}_y\cos \theta \right)}^{m-i-l}\right\}{\widehat{G}}_{\sigma}\left({\omega}_x,{\omega}_y\right)\\ {}=\sum \limits_{m=1}^k\sum \limits_{i=0}^m{k}_{m,i}\sum \limits_{t=0}^i\sum \limits_{l=0}^{m-i}{\left(-1\right)}^l{C}_i^t{C}_{m-i}^l{\left(\cos \theta \right)}^{t+m-i-l}{\left(\sin \theta \right)}^{i-t+l}\underset{\Im \left(\frac{\partial^{t+l}}{\partial x}\frac{\partial^{m-\left(t+l\right)}}{\partial y}{G}_{\sigma}\left(x,y\right)\right)}{\underbrace{{\left(j{\omega}_x\right)}^{t+l}{\left(j{\omega}_y\right)}^{m-\left(t+l\right)}{\widehat{G}}_{\sigma}\left({\omega}_x,{\omega}_y\right)}}\end{array}} $$
(39)

where (f(x))means the Fourier transform of the function f(x);\( {C}_m^n \) is the binomial coefficient, \( {C}_m^n=\frac{m!}{n!\left(m-n\right)!} \); \( {\widehat{G}}_{\sigma}\left({\omega}_x,{\omega}_y\right) \) is the Fourier transform of the Gaussian function Gσ(x, y). According to the convolution theorem, we can perform Fourier transform on both sides of Eq. (13), then we can obtain,

$$ {\displaystyle \begin{array}{c}\Im \left\{I\left(\mathbf{X}\right)\ast {G}_{\kappa, \sigma}\left(\mathbf{X}{\mathbf{R}}_{\theta}\right)\right\}=\widehat{I}\left({\omega}_x,{\omega}_y\right)\Im \left\{{G}_{\kappa, \sigma}\left(\mathbf{X}{\mathbf{R}}_{\theta}\right)\right\}\\ {}=\widehat{I}\left({\omega}_x,{\omega}_y\right)\sum \limits_{m=1}^k\sum \limits_{i=0}^m{k}_{m,i}\sum \limits_{t=0}^i\sum \limits_{i=0}^{m-i}\left\{\begin{array}{l}{\left(-1\right)}^l{C}_i^t{C}_{m-i}^l\times \\ {}{\left(\cos \theta \right)}^{t+m-i-l}\times \\ {}{\left(\sin \theta \right)}^{i-t+l}\end{array}\right\}\Im \left(\frac{\partial^{t+l}}{\partial x}\frac{\partial^{m-\left(t+l\right)}}{\partial y}{G}_{\sigma}\left(x,y\right)\right)\end{array}} $$
(40)

We then perform inverse Fourier transformation on the formula (40) and we can achieve the time domain expression of I(X) ∗ Gκ, σ(XRθ)

$$ {\displaystyle \begin{array}{c}I\left(\mathbf{X}\right)\ast {G}_{\kappa, \sigma}\left(\mathbf{X}{\mathbf{R}}_{\theta}\right)={\Im}^{-1}\left\{\Im \left\{I\left(\mathbf{X}\right)\ast {G}_{\kappa, \sigma}\left(\mathbf{X}{\mathbf{R}}_{\theta}\right)\right\}\right\}\\ {}=\sum \limits_{m=1}^k\sum \limits_{i=0}^m{k}_{m,i}\sum \limits_{t=0}^i\sum \limits_{i=0}^{m-i}\left\{\begin{array}{l}{\left(-1\right)}^l{C}_i^t{C}_{m-i}^l\times \\ {}{\left(\cos \theta \right)}^{t+m-i-l}\times \\ {}{\left(\sin \theta \right)}^{i-t+l}\end{array}\right\}{\Im}^{-1}\left\{\Im \left\{I\left(x,y\right)\right\}\Im \left(\frac{\partial^{t+l}}{\partial x}\frac{\partial^{m-\left(t+l\right)}}{\partial y}{G}_{\sigma}\left(x,y\right)\right)\right\}\\ {}=\sum \limits_{m=1}^k\sum \limits_{i=0}^m{k}_{m,i}\sum \limits_{t=0}^i\sum \limits_{i=0}^{m-i}{\left(-1\right)}^l{C}_i^t{C}_{m-i}^l{\left(\cos \theta \right)}^{t+m-i-l}{\left(\sin \theta \right)}^{i-t+l}{I}_{m,m-\left(t+l\right)}\left(\mathbf{X}\right)\end{array}} $$
(41)

Compare the formula (41) and (13), if we setj = m − (t + l) where 0 ≤ j ≤ m, then

$$ I\left(\mathbf{X}\right)\ast {G}_{\kappa, \sigma}\left(\mathbf{X}{\mathbf{R}}_{\theta}\right)=\sum \limits_{m=1}^k\sum \limits_{j=0}^m{I}_{m,j}\left(\mathbf{X}\right)\underset{\alpha_{m,j}}{\underbrace{\sum \limits_{i=0}^m{k}_{m,i}\sum \limits_{t=0}^i\sum \limits_{l=0}^{m-i}{\left(-1\right)}^l{C}_i^t{C}_{m-i}^l{\left(\cos \theta \right)}^{t+m-i-l}{\left(\sin \theta \right)}^{i-t+l}}} $$
(42)

Consequently, we can obtain αm, j as the following expression [18]:

$$ {\alpha}_{m,j}=\sum \limits_{i=0}^m{k}_{m,i}\sum \limits_{t=0}^i\sum \limits_{l=0}^{m-i}{\left(-1\right)}^l{C}_i^t{C}_{m-i}^l{\left(\cos \theta \right)}^{t+m-i-l}{\left(\sin \theta \right)}^{i-t+l} $$
(43)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., He, J., Zhang, W. et al. Texture pattern classification based on probability density function estimation of the image spatial structure feature with symmetrical weibull distribution model. Multimed Tools Appl 78, 12251–12279 (2019). https://doi.org/10.1007/s11042-018-6704-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-018-6704-z

Keywords

Navigation