Skip to main content
Log in

Improved schemes for visual secret sharing based on random grids

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Random grid (RG) is an alternative approach to realize a visual secret sharing (VSS) scheme. RG-based VSS has merits such as no pixel expansion and no tailor-made matrix requirement. Recently, many investigations on RG-based VSS are made. However, they need further improvements. In this paper, we obtain some improvements on RG-based VSS. Actually, two improved schemes are proposed, namely RG-based VSS for general access structure (GAS) with improved contrast and extended RG-based VSS with improved access structure. The first scheme can achieve better contrast than previous schemes. The second scheme reduces the chance of suspicion on secret image encryption by generating meaningful shares instead of noise-like shares in the first scheme, and improves the access structure from (k, k) to GAS while maintaining the property that the contrast of the recovered image is traded with that of share images by setting a certain parameter from small to large. Finally, theoretical analyses and experimental results are provided to demonstrate the effectiveness and advantages of the proposed schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ateniese G, Blundo C, De Santis A, Stinson D (1996) Visual cryptography for general access structures. Inf Comput 129(2):86–106

    Article  MathSciNet  MATH  Google Scholar 

  2. Blundo C, De Santis A, Stinson D (1999) On the contrast in visual cryptography. J Cryptol 12:261–289

    Article  MathSciNet  MATH  Google Scholar 

  3. Chao H, Fan T (2017) Random-grid based progressive visual secret sharing scheme with adaptive priority. Digit Sign Process 68:69–80

    Article  Google Scholar 

  4. Chen Y (2017) Fully incrementing visual cryptography from a succinct non-monotonic structure. IEEE Trans Inform Foren Sec 12(5):1082–1091

    Article  Google Scholar 

  5. Chen T, Tsao K (2009) Visual secret sharing by random grids revisited. Pattern Recogn 42(9):2203–2217

    Article  MATH  Google Scholar 

  6. Chen T, Tsao K (2011) Threshold visual secret sharing by random grids. J Syst Softw 84:1197–1208

    Article  Google Scholar 

  7. Chen T, Tsao K (2011) User-friendly random-grid-based visual secret sharing. IEEE Trans Circ Syst Video Technol 21(11):1693–1703

    Article  Google Scholar 

  8. Cimato S., Prisco R., De Santis A.: Probabilistic visual cryptography schemes. Comput J 49, 97–107 (2006)

    Article  MATH  Google Scholar 

  9. D’Arco P, Prisco R, Desmedt Y (2016) Private visual share-homomorphic computation and randomness reduction in visual cryptography. Int Conf Inform Theor Sec: 95–113

  10. De Prisco R, De Santis A (2014) On the relation of random grid and deterministic visual cryptography. IEEE Trans Inform Foren Sec 9(4):653–665

    Article  Google Scholar 

  11. Fu Z, Yu B (2013) Visual cryptography and random grids schemes. Digit-Foren Watermark: 109–122

  12. Fu Z, Yu B (2014) Optimal pixel expansion of deterministic visual cryptography scheme. Multimed Tools Appl 73(3):1177–1193

    Article  Google Scholar 

  13. Guo T, Liu F, Wu C (2013) Threshold visual secret sharing by random grids with improved contrast. J Syst Softw 86:2094–2109

    Article  Google Scholar 

  14. Guo T, Liu F, Wu C (2014) k out of k extended visual cryptography scheme by random grids. Signal Process 94:90–101

    Article  Google Scholar 

  15. Horng G, Chen T, Tsai D (2006) Cheating in visual cryptography. Designs Codes Cryptograp 38(2):219–236

    Article  MathSciNet  MATH  Google Scholar 

  16. Hu H, Shen G, Fu Z, Wang J (2016) General construction for XOR-based visual cryptography and its extended capability. Multimed Tools Appl 75(21):1–29

    Article  Google Scholar 

  17. Ito R, Kuwakado H, Tanaka H (1999) Image size invariant visual cryptography. IEICE Trans Fundam Electron Commun Comput Sci 82(10):2172–2177

    Google Scholar 

  18. Kafri O, Keren E (1987) Encryption of pictures and shapes by random grids. Opt Lett 12(6):377–379

    Article  Google Scholar 

  19. Liu F, Wu C (2011) Embedded extended visual cryptography schemes. IEEE Trans Inform Foren Sec 6(2):307–322

    Article  Google Scholar 

  20. Naor M, Shamir A (1995) Visual cryptography. Lect Notes Comput Sci 950(1):1–2

    MathSciNet  MATH  Google Scholar 

  21. Prisco R, Santis A (2013) Color visual cryptography schemes for black and white secret images. Theor Comput Sci 510(7):62–86

    Article  MathSciNet  MATH  Google Scholar 

  22. Ren Y, Liu F, Guo T, Feng R, Lin D (2017) Cheating prevention visual cryptography scheme using Latin square. IET Inf Secur 11(4):211–219

    Article  Google Scholar 

  23. Shen, G Liu F, Fu Z., Yu B (2016) Perfect contrast XOR-based visual cryptography schemes via linear algebra. Designs Codes Cryptogra: 1–23

  24. Shivani S, Agarwal S (2016) Progressive visual cryptography with unexpanded meaningful shares. ACM transactions on multimedia computing. Commun Appl 12(4):1–24

    Google Scholar 

  25. Shyu S (2006) Efficient visual secret sharing scheme for color images. Pattern Recogn 39(5):866–880

    Article  MATH  Google Scholar 

  26. Shyu S (2007) Image encryption by random grids. Pattern Recogn 40(3):1014–1031

    Article  MATH  Google Scholar 

  27. Shyu S (2009) Image encryption by multiple random grids. Pattern Recogn 42(7):1582–1596

    Article  MATH  Google Scholar 

  28. Shyu S (2013) Visual cryptograms of random grids for general access structures. IEEE Trans Circ Syst Video Technol 23(3):414–424

    Article  Google Scholar 

  29. Wu X, Sun W (2012) Random grid-based visual secret sharing for general access structures with cheat-preventing ability. J Syst Softw 85(5):1119–1134

    Article  Google Scholar 

  30. Wu X, Sun W (2012) Visual secret sharing for general access structures by random grids. IET Inf Secur 6(4):299–309

    Article  Google Scholar 

  31. Wu X, Sun W (2013) Improving the visual quality of random grid-based visual secret sharing. Signal Process 93(5):977–995

    Article  Google Scholar 

  32. Wu X, Sun W (2014) Generalized random grid and its applications in visual cryptography. IEEE Trans Inform Foren Sec 8(9):1541–1553

    Article  Google Scholar 

  33. Yan X, Lu Y (2016) Participants increasing for threshold random grids-based visual secret sharing. J Real-Time Image Proc:1–12

  34. Yan X, Liu Y, Huang H, Liu L, Wang S (2017) Quality-adaptive threshold visual secret sharing by random grids. IEEE Int Conf Signal Image Process. https://doi.org/10.1109/SIPROCESS.2016.7888277

  35. Yang C (2004) New visual secret sharing schemes using probabilistic method. Pattern Recogn Lett 25(4):481–494

    Article  Google Scholar 

  36. Yang C, Wu C, Wang D (2014) A discussion on the relationship between probabilistic visual cryptography and random grid. Inf Sci 278:141–173

    Article  MathSciNet  MATH  Google Scholar 

  37. Yu B, Shen G (2014) Multi-secret visual cryptography with deterministic contrast. Multimed Tools Appl 72(2):1867–1886

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the reviewers for their detailed reviews and constructive comments, which have helped improve the quality of this paper. This work was supported by the Natural Science Foundation of China (Grant No. 61602513), the National Key Research and Development Program of China (Grant No. 2016YFF0204002, 2016YFF0204003), the Equipment Pre-research Foundation During the 13th Five-Year Plan Period (Grant No. 6140002020115), the CCF-Venus “Hongyan” Scientific Research Plan Foundation (Grant No. 2017003), the Outstanding Youth Foundation of Zhengzhou Information Science and Technology Institute (Grant No.2016611303), and the Science and technology leading talent project of Zhengzhou (Grant No. 131PLJRC644).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Hu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Some basic symbols, concepts and definitions in this paper are provided as follows

Definition 1 (General access structure [1])

For VSS, let P = {1, 2, ⋯, n} be a set of participants and let 2P denote the set of all subsets ofP. Let ΓQual ⊆ 2P andΓForb ⊆ 2P, whereΓQual ∩ ΓForb = ∅. Members of ΓQual are referred as qualified sets and Members of ΓForb are referred as forbidden sets. The pair (ΓQual, ΓForb) is called GAS.

Definition 2 (Minimal qualified set [1])

Let Γ0 consist of all the minimal qualified sets as:

$$ {\varGamma}_0=\left\{Q\in {\varGamma}_{Qual}:{Q}^{\prime}\notin {\varGamma}_{Qual}\ \mathrm{for}\ \mathrm{all}\ {Q}^{\prime}\subset Q\right\} $$
(6)

Definition 3 (Strong access structure [1])

If ΓQual is monotone increasing and ΓForb is monotone decreasing, then the access structure is said to be strong, and Γ0 is called a basis.

Definition 4 (Essential participant [1])

A participant p ∈ P is an essential participant if there exists a set X satisfies X ∪ {p} ∈ ΓQual but X ∉ ΓQual.

Definition 5 (Average light transmission [26])

For a certain pixel s in a secret image S whose size is M × N, the probability for s being transparent, say Prob(s = 0), is represented as the light transmission of s, say T(s). The light transmission of a white (resp. black) pixel is defined as T(s) = 1 (resp. T(s) = 0). Then the average light transmission of S is defined as

$$ T(S)=\frac{1}{M\times N}\times \sum \limits_{i=1}^M\sum \limits_{j=1}^NT\left(S\left[i,j\right]\right) $$
(7)

Definition 6 (RG-based VSS)

(ΓQual, ΓForb) is a strong access structure on a set of n participants and Γ0 is defined as its basis. (ΓQual, ΓForb) constitutes a RG-based VSS if the following three conditions are met:

  1. 1)

    Each of n random grids R1, ⋯, Rn is determined in a random way.

  2. 2)

    IfX = {i1, i2, ⋯, it} ∈ ΓQual, the stacking result of the t random grids, represented by \( {R}_{i_1\otimes \cdots \otimes {i}_t}={R}_{i_1}\otimes \cdots \otimes {R}_{i_t} \), can recover the original secret image S:

$$ T\left({R}_{i_1\otimes \cdots \otimes {i}_t}\left[S(0)\right]\right)>T\left({R}_{i_1\otimes \cdots \otimes {i}_t}\left[S(1)\right]\right) $$
(8)

where S(0) (resp.S(1)) denote the area of all the white (resp. black) pixels in the secret image and \( {R}_{i_1\otimes \cdots \otimes {i}_t}\left[S(0)\right] \) (resp. \( {R}_{i_1\otimes \cdots \otimes {i}_t}\left[S(1)\right] \)) denote the corresponding area of all the white (resp. black) pixels in the recovered secret image.

  1. 3)

    If X = {i1, i2, ⋯, it} ∈ ΓForb, the stacking result of the t random grids gives no clue about the original secret image S:

$$ T\left({R}_{i_1\otimes \cdots \otimes {i}_t}\left[S(0)\right]\right)=T\left({R}_{i_1\otimes \cdots \otimes {i}_t}\left[S(1)\right]\right) $$
(9)

The visual quality of the recovered secret image is measured by the contrast.

Definition 7 (Contrast [26])

ForX = {i1, i2, ⋯, it} ∈ ΓQual, the contrast of the recovered secret image \( {R}_{i_1\otimes \cdots \otimes {i}_t}={R}_{i_1}\otimes \cdots \otimes {R}_{i_t} \) with respect to the original secret image S is

$$ {\alpha}_X=\frac{T\left({R}_{i_1\otimes \cdots \otimes {i}_t}\left[S(0)\right]\right)-T\left({R}_{i_1\otimes \cdots \otimes {i}_t}\left[S(1)\right]\right)}{1+T\left({R}_{i_1\otimes \cdots \otimes {i}_t}\left[S(1)\right]\right)} $$
(10)

Contrast determines how well human visual system can recognize the recovered secret image. A larger contrast is more easily to be accepted.

Definition 8 (Equivalence set)

A, B and C are three different nonempty sets. Let A ⊕ Bbe the XOR-ed result of all the corresponding elements of A and B. If A ⊕ B = B ⊕ C, then C is called an equivalence set with respect to A, denoted as C ≅ A.

Definition 9 (Equivalence qualified set)

Let D ∈ ΓQual be a qualified set. If there exists C ≅ A, where A ∈ 2D and C ∉ 2D, then D is generated by replacing C for A with regard to the elements in D. D is called an equivalence qualified set with respect to D, denoted as D ∼ D.

Appendix B

Theoretical analyses on Algorithm 4 are provided as follows

Lemma 1

Given p random grids R1(i, j), ⋯, Rp(i, j) assigned 0 or 1 randomly. We can derive\( Prob\left({R}_{1\oplus \cdots \oplus p}\left(i,j\right)=0\right)=\frac{1}{2} \).

Proof: By using induction method,

  1. (1)

    when p = 2, we have

    $$ {\displaystyle \begin{array}{l}\kern0.5em Prob\left({R}_{1\otimes 2}\left(i,j\right)=0\right)\\ {}=\kern0.5em Prob\left({R}_1\left(i,j\right)=0\right)\times Prob\left({R}_2\left(i,j\right)=0\right)\\ {}\begin{array}{cc}& + Prob\left({R}_1\left(i,j\right)=1\right)\times Prob\left({R}_2\left(i,j\right)=1\right)\end{array}\\ {}\begin{array}{cc}=& \frac{1}{2}\end{array}\end{array}} $$
    (11)
  2. (2)

    Assume that the claim holds for p − 1, namely, \( Prob\left({R}_{1\oplus \cdots \oplus p-1}\left(i,j\right)=0\right)=\frac{1}{2} \), and then we have

$$ {\displaystyle \begin{array}{l}\kern0.5em Prob\left({R}_{1\otimes p}\left(i,j\right)=0\right)\\ {}\begin{array}{cc}=& Prob\left({R}_{1\oplus \cdots \oplus p-1}\left(i,j\right)=0\right)\times Prob\left({R}_p\left(i,j\right)=0\right)\end{array}\\ {}\begin{array}{cc}& + Prob\left({R}_{1\oplus \cdots \oplus p-1}\left(i,j\right)=1\right)\times Prob\left({R}_p\left(i,j\right)=1\right)\end{array}\\ {}\begin{array}{cc}=& \frac{1}{2}\end{array}\end{array}} $$
(12)

Obviously, the claim also holds for p.

To sum up, Lemma 1 holds.

Lemma 2

Given p random grids R1(i, j), ⋯, Rp(i, j) assigned 0 or 1 randomly. We can derive \( Prob\left({R}_{1\otimes \cdots \otimes p}\left(i,j\right)=0\right)={\left(\frac{1}{2}\right)}^p \).

Proof: Since R1(i, j), ⋯, Rp(i, j) are assigned 0 or 1 randomly, we obtain

$$ Prob\left({R}_1\left(i,j\right)=0\right)=\cdots = Prob\left({R}_p\left(i,j\right)=0\right)=\frac{1}{2} $$
(13)

Therefore, we have

$$ {\displaystyle \begin{array}{l}\kern0.5em Prob\left({R}_{1\otimes \cdots \otimes p}\left(i,j\right)=0\right)\\ {}\begin{array}{cc}=& Prob\left({R}_1\left(i,j\right)=0\right)\times \cdots \times Prob\left({R}_p\left(i,j\right)=0\right)\end{array}\\ {}{\begin{array}{cc}=& \left(\frac{1}{2}\right)\end{array}}^p\end{array}} $$
(14)

Lemma 3

For the secret pixelS(i, j), given p − 1 random grids R1(i, j), ⋯, Rp − 1(i, j) assigned 0 or 1 randomly, and then assign the p-th random gridRp(i, j) = S(i, j) ⊕ R1(i, j) ⊕ ⋯ ⊕ Rp − 1(i, j). We have \( Prob\left({R}_p\left(i,j\right)=0\right)=\frac{1}{2} \)no matter S(i, j)is 0 or 1.

Proof: ForS(i, j) = 0,Rp(i, j) = R1(i, j) ⊕ ⋯ ⊕ Rp − 1(i, j). ForS(i, j) = 1, \( {R}_p\left(i,j\right)=\overline{R_1\left(i,j\right)\oplus \cdots \oplus {R}_{p-1}\left(i,j\right)} \). By Lemma 1, we have

$$ Prob\left({R}_1\left(i,j\right)\oplus \cdots \oplus {R}_{p-1}\left(i,j\right)=0\right)=\frac{1}{2} $$
(15)

and

$$ Prob\left(\overline{R_1\left(i,j\right)\oplus \cdots \oplus {R}_{p-1}\left(i,j\right)}=0\right)=\frac{1}{2} $$
(16)

Thus, \( Prob\left({R}_p\left(i,j\right)=0\right)=\frac{1}{2} \)no matter S(i, j)is 0 or 1.

Lemma 4

Given a secret pixelS(i, j), the n random grids R1(i, j), ⋯, Rn(i, j) generated by Steps 2–10 satisfy

$$ Prob\left({R}_1\left(i,j\right)=0\right)=\cdots = Prob\left({R}_n\left(i,j\right)=0\right)=\frac{1}{2} $$
(17)

Proof: By analyzing the generation of n random grids, the following three cases are considered.

  1. 1)

    Generate a random grid by assigning 0 or 1 randomly. For this case, each generated random grid satisfies Lemma 4.

  2. 2)

    Generate a random grid by XORing the secret pixelS(i, j)with some certain randomly generated random grids. For this case, each generated random grid satisfies Lemma 4 according to Lemma 3.

  3. 3)

    Generate a random grid by XORing some certain randomly generated random grids. For this case, each generated random grid satisfies Lemma 4according to Lemma 1.

To sum up, Lemma 4 holds.

Lemma 5

Given a secret pixel S(i, j), there are p random grids with \( S\left(i,j\right)={R}_{i_1}\left(i,j\right)\oplus {R}_{i_2}\left(i,j\right)\oplus \cdots \oplus {R}_{i_p}\left(i,j\right) \). If S(i, j) = 1, we have \( T\left({R}_{i_1\otimes \cdots \otimes {i}_p}\left[S\left(i,j\right)=1\right]\right)=0 \).

Proof: Since \( S\left(i,j\right)={R}_{i_1}\left(i,j\right)\oplus {R}_{i_2}\left(i,j\right)\oplus \cdots \oplus {R}_{i_p}\left(i,j\right) \), we have \( {R}_{i_p}\left(i,j\right)={R}_{i_1}\left(i,j\right)\oplus {R}_{i_2}\left(i,j\right)\oplus \cdots \oplus S\left(i,j\right) \). If S(i, j) = 1, then \( {R}_{i_p}\left(i,j\right)=\overline{R_{i_1}\left(i,j\right)\oplus {R}_{i_2}\left(i,j\right)\oplus \cdots \oplus {R}_{i_{p-1}}\left(i,j\right)} \). The stacking result of the p random grids is white only if all the p random grids are white. However, when the p − 1 random grids are white, \( {R}_{i_p}\left(i,j\right) \) is black. The probability of the stacking result being white is zero. Therefore, we have\( T\left({R}_{i_1\otimes \cdots \otimes {i}_p}\left[S\left(i,j\right)=1\right]\right)=0 \).

Lemma 6

Given a secret pixel S(i, j), n random grids R1(i, j), ⋯, Rn(i, j) and a collection of minimal qualified sets \( {\varGamma}_0^{\prime } \), which are generated by Steps 2–10. For t random grids \( {R}_{i_1}\left(i,j\right),\cdots, {R}_{i_t}\left(i,j\right) \), the following two conclusions can be obtained:

  1. 1)

    If there is at least one minimal qualified set\( Q\subseteq {\varGamma}_0^{\prime } \)satisfyingQ ⊆ {i1, ⋯, it}, then we have

$$ T\left({R}_{i_1\otimes \cdots \otimes {i}_t}\left[S\left(i,j\right)=0\right]\right)={\left(\frac{1}{2}\right)}^{e_1} $$
(18)

and

$$ T\left({R}_{i_1\otimes \cdots \otimes {i}_t}\left[S\left(i,j\right)=1\right]\right)=0 $$
(19)

where e1 denotes the number of randomly generated random grids for generating \( {R}_{i_1}\left(i,j\right),\cdots, {R}_{i_t}\left(i,j\right) \) according to the proof of Lemma 4.

  1. 2)

    If there is no minimal qualified set \( Q\subseteq {\varGamma}_0^{\prime } \) satisfying Q ⊆ {i1, ⋯, it}, then we have

$$ T\left({R}_{i_1\otimes \cdots \otimes {i}_t}\left[S\left(i,j\right)=0\right]\right)=T\left({R}_{i_1\otimes \cdots \otimes {i}_t}\left[S\left(i,j\right)=1\right]\right)={\left(\frac{1}{2}\right)}^{e_2} $$
(20)

where e2 denotes the number of randomly generated random grids for generating \( {R}_{i_1}\left(i,j\right),\cdots, {R}_{i_t}\left(i,j\right) \) according to the proof of Lemma 4.

Proof: For S(i, j) = 0, since \( {R}_{i_1}\left(i,j\right),\cdots, {R}_{i_t}\left(i,j\right) \) are generated by random grids comprising stochastic 0 or 1, the probability of \( {R}_{i_1}\left(i,j\right)=0,\cdots, {R}_{i_t}\left(i,j\right)=0 \) is equal to the case when all the randomly generated random grids are white pixels. Therefore, for the first condition, we have

$$ T\left({R}_{i_1\otimes \cdots \otimes {i}_t}\left[S\left(i,j\right)=0\right]\right)={\left(\frac{1}{2}\right)}^{e_1} $$
(21)

and for the second condition, we have

$$ T\left({R}_{i_1\otimes \cdots \otimes {i}_t}\left[S\left(i,j\right)=0\right]\right)={\left(\frac{1}{2}\right)}^{e_2} $$
(22)

For S(i, j) = 1, two cases are considered:

  1. 1)

    If there is at least one minimal qualified set\( Q\subseteq {\varGamma}_0^{\prime } \)satisfyingQ ⊆ {i1, ⋯, it}, assume Q = {j1, j2, ⋯, jp} and according to Steps 6–7 of Algorithm 4, we have

$$ S\left(i,j\right)={R}_{j_1}\left(i,j\right)\oplus {R}_{j_2}\left(i,j\right)\oplus \cdots \oplus {R}_{j_p}\left(i,j\right) $$
(23)

By Lemma 5, we obtain \( T\left({R}_{j_1\otimes \cdots \otimes {j}_p}\left[S\left(i,j\right)=1\right]\right)=0 \). Since {j1, j2, ⋯, jp} ⊆ {i1, ⋯, it}, we have

$$ T\left({R}_{i_1\otimes \cdots \otimes {i}_t}\left[S\left(i,j\right)=1\right]\right)=0 $$
(24)
  1. 2)

    If there is no minimal qualified set \( Q\subseteq {\varGamma}_0^{\prime } \) satisfying Q ⊆ {i1, ⋯, it}, then the stacking result of the t random grids is white only if all the t random grids are white. The probability of \( {R}_{i_1}\left(i,j\right)=0,\cdots, {R}_{i_t}\left(i,j\right)=0 \) is equal to the case when all the e2 randomly generated random grids are white. Therefore, \( T\left({R}_{i_1\otimes \cdots \otimes {i}_t}\left[S\left(i,j\right)=1\right]\right)={\left(\frac{1}{2}\right)}^{e_2} \).

To sum up, this lemma holds.

Theorem 1

Given a secret imageSand a strong access structure(ΓQual, ΓForb), the proposed Algorithm 4 is a valid construction for RG-based VSS, which meets the following three conditions:

  1. 1)

    Each of n shares R1, ⋯, Rn is determined in a random way:

$$ Prob\left({R}_t=0\right)= Prob\left({R}_t=1\right)=\frac{1}{2},t=1,2,\cdots, n $$
(25)
  1. 2)

    IfX = {i1, i2, ⋯, it} ∈ ΓQual, the stacking result of the t shares can decode the original secret image S:

$$ T\left({R}_{i_1\otimes \cdots \otimes {i}_t}\left[S(0)\right]\right)>T\left({R}_{i_1\otimes \cdots \otimes {i}_t}\left[S(1)\right]\right) $$
(26)
  1. 3)

    IfX = {i1, i2, ⋯, it} ∈ ΓForb, the stacking result of the t shares gives no clue about the original secret image S:

$$ T\left({R}_{i_1\otimes \cdots \otimes {i}_t}\left[S(0)\right]\right)=T\left({R}_{i_1\otimes \cdots \otimes {i}_t}\left[S(1)\right]\right) $$
(27)

Proof: By Lemma 4, we can conclude that the first condition of this theorem holds immediately.

Given a secret pixelS(i, j), a collection of minimal qualified sets \( {\varGamma}_0^{\prime } \) are generated by Steps 2–10. Let k =  ∣ Γ0∣ denote the number of minimal qualified sets in Γ0 and \( {k}^{\prime }=\mid {\varGamma}_0^{\prime}\mid \) (k ≤ k) denote the number of minimal qualified sets in\( {\varGamma}_0^{\prime } \). Assume that the elements in X = {i1, i2, ⋯, it}can form d minimal qualified sets. The probability for the case that at least one minimal qualified set \( Q\subseteq {\varGamma}_0^{\prime } \) satisfies Q ⊆ {i1, ⋯, it} is \( 1-\frac{\left(\begin{array}{l}k-{k}^{\prime}\\ {}d\end{array}\right)}{\left(\begin{array}{l}k\\ {}d\end{array}\right)} \) and the probability for no minimal qualified set \( Q\subseteq {\varGamma}_0^{\prime } \) satisfying Q ⊆ {i1, ⋯, it} is \( \frac{\left(\begin{array}{l}k-{k}^{\prime}\\ {}d\end{array}\right)}{\left(\begin{array}{l}k\\ {}d\end{array}\right)} \). Therefore, the light transmissions of the stacking result are

$$ T\left({R}_{i_1\otimes \cdots \otimes {i}_t}\left[S\left(i,j\right)=0\right]\right)=\left(1-\frac{\left(\begin{array}{l}k-{k}^{\prime}\\ {}d\end{array}\right)}{\left(\begin{array}{l}k\\ {}d\end{array}\right)}\right){\left(\frac{1}{2}\right)}^{e_1}+\frac{\left(\begin{array}{l}k-{k}^{\prime}\\ {}d\end{array}\right)}{\left(\begin{array}{l}k\\ {}d\end{array}\right)}{\left(\frac{1}{2}\right)}^{e_2} $$
(28)

and

$$ T\left({R}_{i_1\otimes \cdots \otimes {i}_t}\left[S\left(i,j\right)=1\right]\right)=\frac{\left(\begin{array}{l}k-{k}^{\prime}\\ {}d\end{array}\right)}{\left(\begin{array}{l}k\\ {}d\end{array}\right)}{\left(\frac{1}{2}\right)}^{e_2} $$
(29)

Then

$$ {\displaystyle \begin{array}{l}\kern0.5em T\left({R}_{i_1\otimes \cdots \otimes {i}_t}\left[S\left(i,j\right)=0\right]\right)-T\left({R}_{i_1\otimes \cdots \otimes {i}_t}\left[S\left(i,j\right)=1\right]\right)\\ {}\begin{array}{cc}=& \left(1-\frac{\left(\begin{array}{l}k-{k}^{\prime}\\ {}d\end{array}\right)}{\left(\begin{array}{l}k\\ {}d\end{array}\right)}\right){\left(\frac{1}{2}\right)}^{e_1}\end{array}\end{array}} $$
(30)

If X = {i1, i2, ⋯, it} ∈ ΓQual, d ≥ 1 and we have

$$ T\left({R}_{i_1\otimes \cdots \otimes {i}_t}\left[S\left(i,j\right)=0\right]\right)>T\left({R}_{i_1\otimes \cdots \otimes {i}_t}\left[S\left(i,j\right)=1\right]\right) $$
(31)

If X = {i1, i2, ⋯, it} ∈ ΓForb, d = 0 and we have

$$ T\left({R}_{i_1\otimes \cdots \otimes {i}_t}\left[S\left(i,j\right)=0\right]\right)=T\left({R}_{i_1\otimes \cdots \otimes {i}_t}\left[S\left(i,j\right)=1\right]\right) $$
(32)

According to Definition 5, we conclude the second and third conditions of this theorem.

Theorem 2

The RG-based VSS for GAS presented in [30] is the special case of the proposed RG-based VSS for GAS with contrast \( \frac{2d}{\left({2}^t+1\right)k-d} \).

Proof: For Algorithm 4, if k = 1, we have e1 = t − 1 and e2 = t. Thus, by Theorem 1 we have

$$ {\displaystyle \begin{array}{l}T\left({R}_{i_1\otimes \cdots \otimes {i}_t}\left[S\left(i,j\right)=0\right]\right)=\left(1-\frac{\left(\begin{array}{l}k-1\\ {}d\end{array}\right)}{\left(\begin{array}{l}k\\ {}d\end{array}\right)}\right){\left(\frac{1}{2}\right)}^{t-1}+\frac{\left(\begin{array}{l}k-1\\ {}d\end{array}\right)}{\left(\begin{array}{l}k\\ {}d\end{array}\right)}{\left(\frac{1}{2}\right)}^t\\ {}\begin{array}{cccc}\begin{array}{cc}& \end{array}& & & \end{array}\kern1.50em =\frac{d}{k}{\left(\frac{1}{2}\right)}^{t-1}+\left(1-\frac{d}{k}\right){\left(\frac{1}{2}\right)}^t\end{array}} $$
(33)

and

$$ T\left({R}_{i_1\otimes \cdots \otimes {i}_t}\left[S\left(i,j\right)=1\right]\right)=\frac{\left(\begin{array}{l}k-1\\ {}d\end{array}\right)}{\left(\begin{array}{l}k\\ {}d\end{array}\right)}{\left(\frac{1}{2}\right)}^t=\left(1-\frac{d}{k}\right){\left(\frac{1}{2}\right)}^t $$
(34)

By Definition 5 and Definition 7, the contrast is

$$ {\displaystyle \begin{array}{l}\kern0.5em \frac{T\left({R}_{i_1\otimes \cdots \otimes {i}_t}\left[S(0)\right]\right)-T\left({R}_{i_1\otimes \cdots \otimes {i}_t}\left[S(1)\right]\right)}{1+T\left({R}_{i_1\otimes \cdots \otimes {i}_t}\left[S(1)\right]\right)}\\ {}\begin{array}{cc}=& \frac{\frac{d}{k}{\left(\frac{1}{2}\right)}^{t-1}}{1+\left(1-\frac{d}{k}\right){\left(\frac{1}{2}\right)}^t}\end{array}\\ {}\begin{array}{cc}=& \frac{2d}{\left({2}^t+1\right)k-d}\end{array}\end{array}} $$
(35)

Herein, Algorithm 4 is reduced to the scheme [30].

Appendix C

Theoretical analyses on Algorithm 5 are provided as follows

Lemma 7

Given a secret pixel S(i, j) and n share pixels ES1(i, j), ⋯, ESn(i, j), any of the n random grids \( {R}_1^{\prime}\left(i,j\right),\cdots, {R}_n^{\prime}\left(i,j\right) \) generated by Algorithm 5 satisfies the following conditions:

  1. 1)

    For any share pixel ESt(i, j) = 0, the average light transmission of the corresponding random grid \( {R}_t^{\prime}\left(i,j\right) \) is

$$ T\left({R}_t^{\prime}\left[E{S}_t\left(i,j\right)=0\right]\right)=\frac{1}{2}\beta +\left(\frac{1}{2}-\delta \right)\left(1-\beta \right) $$
(36)

where t = 1, 2, ⋯, n and \( \delta \le \frac{1}{8} \).

  1. 2)

    For any share pixelESt(i, j) = 1, the average light transmission of the corresponding random grid \( {R}_t^{\prime}\left(i,j\right) \) is

$$ T\left({R}_t^{\prime}\left[E{S}_t\left(i,j\right)=1\right]\right)=\frac{1}{2}\beta $$
(37)

Proof: When d = 0, the random grid \( {R}_t^{\prime}\left(i,j\right) \) is generated by Step 5 of Algorithm 5 and by Lemma 4 we have

$$ T\left({R}_t^{\prime}\left[E{S}_t\left(i,j\right)=0\right]\right)=T\left({R}_t^{\prime}\left[E{S}_t\left(i,j\right)=1\right]\right)=\frac{1}{2} $$
(38)

When d = 1, the random grid \( {R}_t^{\prime}\left(i,j\right) \) is generated by Step 6 of Algorithm 5 and we obtain \( T\left({R}_t^{\prime}\left[E{S}_t\left(i,j\right)=1\right]\right)=0 \) immediately. For ESt(i, j) = 0, the random grid \( {R}_t^{\prime}\left(i,j\right) \) is generated randomly and then assigned black with a probability δ since that the code “randomly choose one from them and assign it black” occurs only when all \( {R}_{i_1}^{\prime}\left(i,j\right),\cdots, {R}_{i_t}^{\prime}\left(i,j\right) \) are all white. For t = 2, \( \delta =\frac{1}{2}\times {\left(\frac{1}{2}\right)}^2=\frac{1}{2} \) is the worst situation. For other cases, the value of δ decreases exponentially as the value of t increases and we can obtain \( \delta \ll \frac{1}{8} \). Since Step 5 occurs with the probability β and Step 6 occurs with the probability 1 − β, we can conclude the above two conditions of this lemma.

Lemma 8

Given a secret pixel S(i, j), an access structure (ΓQual, ΓForb) and n share pixelsES1(i, j), ⋯, ESn(i, j). The n random grids \( {R}_1^{\prime}\left(i,j\right),\cdots, {R}_n^{\prime}\left(i,j\right) \) generated by Algorithm 5 satisfy the following conditions:

  1. 1)

    If X = {i1, i2, ⋯, it} ∈ ΓQual and β > 0, the stacking result of the t random grids can recover the secret pixelS(i, j):

$$ T\left({R}_{i_1\otimes \cdots \otimes {i}_t}^{\prime}\left[S\left(i,j\right)=0\right]\right)>T\left({R}_{i_1\otimes \cdots \otimes {i}_t}^{\prime}\left[S\left(i,j\right)=1\right]\right) $$
(39)
  1. 2)

    If X = {i1, i2, ⋯, it} ∈ ΓForb, the stacking result of the t random grids gives no clue about the secret pixel S(i, j):

$$ T\left({R}_{i_1\otimes \cdots \otimes {i}_t}^{\prime}\left[S\left(i,j\right)=0\right]\right)=T\left({R}_{i_1\otimes \cdots \otimes {i}_t}^{\prime}\left[S\left(i,j\right)=1\right]\right) $$
(40)

Proof: When d = 0, the n random grids \( {R}_1^{\prime}\left(i,j\right),\cdots, {R}_n^{\prime}\left(i,j\right) \)are generated by Step 5 and by Theorem 1 we have

$$ T\left({R}_{i_1\otimes \cdots \otimes {i}_t}^{\prime}\left[S\left(i,j\right)=0\right]\right)=\left(1-\frac{\left(\begin{array}{l}k-{k}^{\prime}\\ {}d\end{array}\right)}{\left(\begin{array}{l}k\\ {}d\end{array}\right)}\right){\left(\frac{1}{2}\right)}^{e_1}+\frac{\left(\begin{array}{l}k-{k}^{\prime}\\ {}d\end{array}\right)}{\left(\begin{array}{l}k\\ {}d\end{array}\right)}{\left(\frac{1}{2}\right)}^{e_2} $$
(41)

and

$$ T\left({R}_{i_1\otimes \cdots \otimes {i}_t}^{\prime}\left[S\left(i,j\right)=1\right]\right)=\frac{\left(\begin{array}{l}k-{k}^{\prime}\\ {}d\end{array}\right)}{\left(\begin{array}{l}k\\ {}d\end{array}\right)}{\left(\frac{1}{2}\right)}^{e_2} $$
(42)

When d = 1, the n random grids \( {R}_1^{\prime}\left(i,j\right),\cdots, {R}_n^{\prime}\left(i,j\right) \) are generated by Step 6, which is independent of the secret pixel. Thus, the light transmission of the stacking result is fixed to the same value no matter what the secret pixel is, namely, \( T\left({R}_{i_1\otimes \cdots \otimes {i}_t}^{\prime}\left[S\left(i,j\right)=0\right]\right)=T\left({R}_{i_1\otimes \cdots \otimes {i}_t}^{\prime}\left[S\left(i,j\right)=1\right]\right)=\theta \).where 0 ≤ θ ≤ 1.

Due to that Step 5 occurs with the probability β and Step 6 occurs with the probability1 − β, we have

$$ {\displaystyle \begin{array}{l}\kern0.5em T\left({R}_{i_1\otimes \cdots \otimes {i}_t}^{\prime}\left[S\left(i,j\right)=0\right]\right)\\ {}\begin{array}{cc}=& \beta \left(\left(1-\frac{\left(\begin{array}{l}k-{k}^{\prime}\\ {}d\end{array}\right)}{\left(\begin{array}{l}k\\ {}d\end{array}\right)}\right){\left(\frac{1}{2}\right)}^{e_1}+\frac{\left(\begin{array}{l}k-{k}^{\prime}\\ {}d\end{array}\right)}{\left(\begin{array}{l}k\\ {}d\end{array}\right)}{\left(\frac{1}{2}\right)}^{e_2}\right)\end{array}+\left(1-\beta \right)\theta \end{array}} $$
(43)

and

$$ T\left({R}_{i_1\otimes \cdots \otimes {i}_t}^{\prime}\left[S\left(i,j\right)=1\right]\right)=\beta \left(\frac{\left(\begin{array}{l}k-{k}^{\prime}\\ {}d\end{array}\right)}{\left(\begin{array}{l}k\\ {}d\end{array}\right)}{\left(\frac{1}{2}\right)}^{e_2}\right)+\left(1-\beta \right)\theta $$
(44)

Therefore, we obtain

$$ {\displaystyle \begin{array}{l}\kern0.5em T\left({R}_{i_1\otimes \cdots \otimes {i}_t}^{\prime}\left[S\left(i,j\right)=0\right]\right)-T\left({R}_{i_1\otimes \cdots \otimes {i}_t}^{\prime}\left[S\left(i,j\right)=1\right]\right)\\ {}\begin{array}{cc}=& \beta \left(1-\frac{\left(\begin{array}{l}k-{k}^{\prime}\\ {}d\end{array}\right)}{\left(\begin{array}{l}k\\ {}d\end{array}\right)}\right){\left(\frac{1}{2}\right)}^{e_1}\end{array}\end{array}} $$
(45)

If X = {i1, i2, ⋯, it} ∈ ΓQual and β > 0, by Theorem 1 we have

$$ T\left({R}_{i_1\otimes \cdots \otimes {i}_t}^{\prime}\left[S\left(i,j\right)=0\right]\right)>T\left({R}_{i_1\otimes \cdots \otimes {i}_t}^{\prime}\left[S\left(i,j\right)=1\right]\right) $$
(46)

If X = {i1, i2, ⋯, it} ∈ ΓForb, by Theorem 1 we have

$$ T\left({R}_{i_1\otimes \cdots \otimes {i}_t}^{\prime}\left[S\left(i,j\right)=0\right]\right)=T\left({R}_{i_1\otimes \cdots \otimes {i}_t}^{\prime}\left[S\left(i,j\right)=1\right]\right) $$
(47)

Theorem 3

Given a secret imageSand a strong access structure(ΓQual, ΓForb), Algorithm 5 is a valid construction for extended RG-based VSS, which meets the following three conditions:

  1. (1)

    If β < 1, each of n random grids \( {R}_1^{\prime },\cdots, {R}_n^{\prime } \) can reveal the corresponding share image no matter what the secret image is:

$$ T\left({R}_t^{\prime}\left[E{S}_t(0)\right]\right)>T\left({R}_t^{\prime}\left[E{S}_t(1)\right]\right),t=1,2,\cdots, n $$
(48)
  1. (2)

    If X = {i1, i2, ⋯, it} ∈ ΓQual and β > 0, the stacking result of the t random grids can recover the secret image S:

$$ T\left({R}_{i_1\otimes \cdots \otimes {i}_t}^{\prime}\left[S(0)\right]\right)>T\left({R}_{i_1\otimes \cdots \otimes {i}_t}^{\prime}\left[S(1)\right]\right) $$
(49)
  1. (3)

    If X = {i1, i2, ⋯, it} ∈ ΓForb, the stacking result of the t random grids gives no clue about the secret image S:

$$ T\left({R}_{i_1\otimes \cdots \otimes {i}_t}^{\prime}\left[S(0)\right]\right)=T\left({R}_{i_1\otimes \cdots \otimes {i}_t}^{\prime}\left[S(1)\right]\right) $$
(50)

Proof: By Lemma 7, we have

$$ T\left({R}_t^{\prime}\left[E{S}_t\left(i,j\right)=0\right]\right)-T\left({R}_t^{\prime}\left[E{S}_t\left(i,j\right)=1\right]\right)=\left(\frac{1}{2}-\delta \right)\left(1-\beta \right) $$
(51)

If β < 1, \( T\left({R}_t^{\prime}\left[E{S}_t\left(i,j\right)=0\right]\right)>T\left({R}_t^{\prime}\left[E{S}_t\left(i,j\right)=1\right]\right) \) since \( \delta \le \frac{1}{8} \). According to Definition 5, we have

$$ T\left({R}_t^{\prime}\left[E{S}_t(0)\right]\right)>T\left({R}_t^{\prime}\left[E{S}_t(1)\right]\right) $$
(52)

By Lemma 8 and Definition 5, the second and third conditions of this theorem can be concluded.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, H., Shen, G., Liu, Y. et al. Improved schemes for visual secret sharing based on random grids. Multimed Tools Appl 78, 12055–12082 (2019). https://doi.org/10.1007/s11042-018-6738-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-018-6738-2

Keywords

Navigation