Abstract
Visual saliency detection plays a significant role in the fields of computer vision. In this paper, we introduce a novel saliency detection method based on weighted linear multiple kernel learning (WLMKL) framework, which is able to adaptively combine different contrast measurements in a supervised manner. As most influential factor is contrast operation in bottom-up visual saliency, an average weighted corner-surround contrast (AWCSC) is first designed to measure local visual saliency. Combined with common-used center-surrounding contrast (CESC) and global contrast (GC), three types of contrast operations are fed into our WLMKL framework to produce the final saliency map. We show that the assigned weights for each contrast feature maps are always normalized in our WLMKL formulation. In addition, the proposed approach benefits from the advantages of the contribution of each individual contrast feature maps, yielding more robust and accurate saliency maps. We evaluated our method for two main visual saliency detection tasks: human fixed eye prediction and salient object detection. The extensive experimental results show the effectiveness of the proposed model, and demonstrate the integration is superior than individual subcomponent.








Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Achanta R, et al (2009) Frequency-tuned salient region detection. In: CVPR, pp 1597–1604
Alexe B, Deselaers T, Ferrari V (2010) What is an object?. In: CVPR, pp 73–80
Bach FR, et al (2004) Multiple kernel learning, conic duality, and the SMO algorithm. In: ICML, pp 6–14
Bonnans F (2006) Optimisation continue. Dunod
Borji A (2012) Boosting bottom-up and top-down visual features for saliency estimation. In: CVPR, pp 438–445
Borji A, et al (2015) Salient object detection: a benchmark. TIP 24(12):5706–5722
Bruce N, Tsotsos J (2006) Saliency based on information maximization. In: NIPS, pp 155–162
Bucak S, et al (2014) Multiple kernel learning for visual object recognition: a review. TIP 36(7):1354–1369
Chang KY, et al (2011) Fusing generic objectness and visual saliency for salient object detection. In: ICCV, pp 914–921
Cheng MM, et al (2011) Global contrast based salient region detection. In: CVPR, pp 409–416
Cornia M, et al (2016) A deep multi-level network for saliency prediction. In: ICPR, pp 3488–3493
Duan L, et al (2011) Visual saliency detection by spatially weighted dissimilarity
Fernandez-Carbajales V, et al (2016) Visual attention based on a joint perceptual space of color and brightness for improved video tracking. Pattern Recogn 60:571–584
Fu Y, et al (2008) Saliency cuts: an automatic approach to object segmentation. In: ICPR, pp 1–4
Gao DS, et al (2008) On the plausibility of the discriminant center-surround hypothesis for visual saliency. J Vis 8(7):13–25
Gao DH, Han S, Vasconcelos N (2009) Discriminant saliency, the detection of suspicious coincidences, and applications to visual recognition. TPAMI 31(6):989–1005
Goferman S, et al (2012) Context-aware saliency detection. TPAMI 34 (10):1915–1926
Gopalakrishnan V, et al (2009) Salient region detection by modeling distributions of color and orientation. TMM 11(5):892–905
Guo C, Zhang L (2010) A novel multiresolution spatiotemporal saliency detection model and its applications in image and video compression. TIP 19(1):185–198
Harel J, et al (2006) Graph-based visual saliency. In: NIPS, pp 545–552
Hou X, Zhang L (2007) Saliency detection: a spectral residual approach. In: CVPR, pp 1–8
Hou X, Zhang L (2008) Dynamic visual attention: searching for coding length increments. In: NIPS, pp 681–688
Huang X, et al (2015) SALICON: reducing the semantic gap in saliency prediction by adapting deep neural networks. In: ICCV, pp 262–270
Huchuan L, et al (2017) Co-bootstrapping saliency. TIP 26(1):414–425
Itti L (1998) Others: a model of saliency-based visual attention for rapid scene analysis. TPAMI 20(11):1254–1259
Itti L, Koch C (2001) Computational modelling of visual attention. Nat Rev Neurosci 2(3):194–203
Jetley S, et al (2016) End-to-end saliency mapping via probability distribution prediction. In: CVPR, pp 5753–5761
Jing PG, Su YT, Nie LQ, Bai X, Liu J, Wang M (2018) Low-rank multi-view embedding learning for micro-video popularity prediction. TKDE 30(8):1519–1532
Jing PG, Su YT, Nie LQ, Gu HM, Liu J, Wang M (2018) A framework of joint low-rank and sparse regression for image memorability prediction CSVT. https://doi.org/10.1109/TCSVT.2018.2832095
John ST, Cristianini N (2004) Kernel methods for pattern analysis. Cambridge University Press, Cambridge
Judd T, et al (2009) Learning to predict where humans look. In: ICCV, pp 2106–2113
Kadir T, Brady M (2001) Saliency, scale and image description. IJCV 45 (2):83–105
Koch C, Ullman S (1985) Shifts in selective visual attention: towards the underlying neural circuitry. Matters Int 4(1):219–227
Kruthiventi SSS, et al (2017) Deepfix: a fully convolutional neural network for predicting human eye fixations. TIP 26(9):4446–4456
Kummerer M, et al (2015) Deep gaze I: boosting saliency prediction with feature maps trained on ImageNet. In: ICLRW, pp 262–270
Liu N, Han JJ (2016) DHSNet: Deep hierarchical saliency network for salient object detection. In: CVPR, pp 678–686
Liu W, et al (2018) Learning to predict eye fixations via multiresolution convolutional neural networks. TNNLS 29(2):392–404
Lu H, et al (2017) Wound intensity correction and segmentation with convolutional neural networks. Concurrency and Computation: Practice and Experience 29(6):3927–3737
Lu H, et al (2018) Brain intelligence: go beyond artificial intelligence. Mobile Netw Appl 23(2):368–375
Lu H, et al (2018) Low illumination underwater light field images reconstruction using deep convolutional neural networks. Futur Gener Comput Syst 82(6):142–148
Ma YF, Zhang HJ (2003) Contrast-based image attention analysis by using fuzzy growing. In: ACMMM, pp 374–381
Ma Q, Zhang L (2008) Image quality assessment with visual attention. In: ICPR, pp 1–4
Mairal J, et al (2010) Online learning for matrix factorization and sparse coding. J Mach Learn Res 11(1):19–60
Marchesotti L, et al (2009) A framework for visual saliency detection with applications to image thumbnailing. In: ICCV, pp 2232–2239
Mehmet G, et al (2011) Multiple kernel learning algorithms. JMLR 12 (7):2211–2268
Nuthmann A, Henderson JM (2010) Object-based attentional selection in scene viewing. J Vis 10(8):2237–2242
Olshausen BA, et al (1996) Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381(7):607–609
Pan J, et al (2016) Shallow and deep convolutional networks for saliency prediction. In: CVPR, pp 598–606
Perazzi F, et al (2012) Saliency filters: contrast based filtering for salient region detection. In: CVPR, pp 733–740
Quan Z, et al (2018) Weighted linear multiple kernel learning for saliency detection. In: ROSENET
Shen X, Wu Y (2012) A unified approach to salient object detection via low rank matrix recovery. In: CVPR, pp 853–860
Simoncelli EP, et al (2001) Natural image statistics and neural representation. Annu Rev Neurosci 24(1):1193–1216
Sonnenburg S, et al (2006) Large scale multiple kernel learning. JMLR 7 (1):1531–1565
Sonnenburg S, et al (2012) Object detection with dog scale-space: a multiple kernel learning approach. TIP 21(8):3744–3756
Srinivas SS, et al (2016) Saliency unified: a deep architecture for simultaneous eye fixation prediction and salient object segmentation. In: CVPR, pp 5781–5790
Tatler BW, et al (2015) Visual correlates of fixation selection: effects of scale and time. Vis Res 45(5):643–659
Thiagarajan J, et al (2014) Multiple kernel sparse representations for supervised and unsupervised learning. TIP 23(7):2905–2915
Tian H, et al (2014) Salient region detection by fusing bottom-up and top-down features extracted from a single image. TIP 23(10):4389–4398
Torralba A, et al (2003) Modeling global scene factors in attention. JOSA A 20(7):1407–1418
Treisman AM, Gelade G (1980) A feature-integration theory of attention. Cogn Psychol 12(1):97–136
Varma M, Ray D (2007) Learning the discriminative power-invariance trade-off. In: ICCV, pp 1–8
Vladimir V (1993) The nature of statistical learning theory. Springer, Berlin
Wang LJ, Lu HC, Wang YF, Feng MY, Wang D, Yin BC, Ruan X (2017) Learning to detect salient objects with image-level supervision. In: CVPR, pp 3796–3805
Wang W, et al (2018) Video salient object detection via fully convolutional networks. TIP 27(1):38–49
Xu ZL, et al (2010) Simple and efficient multiple kernel learning by group lasso. In: ICML, pp 1175–1182
Yin L, et al (2014) The secrets of salient object segmentation. In: CVPR, pp 280–287
Yu JG, et al (2016) A computational model for object-based visual saliency: spreading attention along gestalt cues. TMM 18(2):273–286
Zhang LY, et al (2008) SUN: A Bayesian framework for saliency using natural statistics. J Vis 8(7):32–42
Zhang PP, Wang D, Lu HC, Wang HY, Ruan X (2017) Amulet: aggregating multi-level convolutional features for salient object detection. In: ICCV, pp 202–211
Zhang PP, Wang D, Lu HC, Wang HY, Yin BC (2017) Learning uncertain convolutional features for accurate saliency detection. In: ICCV, pp 212–221
Zhou Q, et al (2013) On contrast combinations for visual saliency detection. In: ICIP, pp 2665–2669
Zhou Q, et al (2014) Salient object detection using window mask transferring with multi-layer background contrast. In: ACCV, pp 221–235
Acknowledgements
The authors would like to thank all the anonymous reviewers for their valuable comments and suggestions. This work was partly supported by the National Science Foundation (Grant No. IIS-1302164), the National Natural Science Foundation of China (Grant No. 61876093, 61881240048, 61671253, 61701252, 61762021), Natural Science Foundation of Jiangsu Province (Grant No. BK20181393, BK20150849, BK20160908), Huawei Innovation Research Program (HIRP2018), and Natural Science Foundation of Guizhou Province (Grant No.[2017]1130).
Author information
Authors and Affiliations
Corresponding authors
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Zhou, Q., Cheng, J., Lu, H. et al. Learning adaptive contrast combinations for visual saliency detection. Multimed Tools Appl 79, 14419–14447 (2020). https://doi.org/10.1007/s11042-018-6770-2
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11042-018-6770-2
Keywords
Profiles
- Weihua Ou View author profile