Skip to main content
Log in

Parameter optimization criteria guided 3D point cloud classification

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

3D point cloud classification is one of the basic topics in multimedia analysis and understanding. By the construction of the discriminant model and efficient parameter optimization, point cloud classification can be achieved after the training. However, most parameter optimization methods do not guarantee the highest global classification accuracy with a high classification accuracy on smaller classes. In addition, geometric features of the point cloud are not sufficiently utilized. In this paper, we use local geometric shape features including the nearest neighbor tetrahedral volume, Gaussian curvature, the neighbourhood normal vector consistency and the neighbourhood minimum principal curvature direction consistency. We propose three discrete criteria for parameter optimization to design explicit functions, and we present concrete algorithms, in which Monte Carlo method and Probabilistic Neural Network method are employed to estimate these parameters respectively. Experimental results show that our criteria can be applied to the classification of the 3D point cloud of the scene, and can be used to improve the classification accuracy of small-scale point sets when different classes have great disparities in the number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Berger M, Tagliasacchi A, Seversky LM, Alliez P, Guennebaud G, Levine JA, Sharf A, Silva CT (2017) A survey of surface reconstruction from point clouds. Comput Graph Forum 36(1):301–329

    Article  Google Scholar 

  2. Brodu N, Lague D (2012) 3d terrestrial lidar data classification of complex natural scenes using a multi-scale dimensionality criterion applications in geomorphology. ISPRS J Photogramm Remote Sens 68(1):121–134

    Article  Google Scholar 

  3. Chen J, Fang Y, Yong KC, Changwan K (2017) Principal axes descriptor for automated construction-equipment classification from point clouds. J Comput Civ Eng 31(2):1–36

    Article  Google Scholar 

  4. Chen Y, Raudenbush SW (2006) Maximum likelihood estimation in generalized linear:large mixed models using monte carlo methods: application to small-area estimation of breast cancer mortality. Chin J Appl Probab Stat 22(1):69–80

    MATH  Google Scholar 

  5. Faugeras O (1993) Three-dimensional computer vision: a geometric viewpoint. MIT Press, Cambridge

    Google Scholar 

  6. Frome A, Huber D, Kolluri R, Bülow T, Malik J (2004) Recognizing objects in range data using regional point descriptors. Lect Notes Comput Sci 3023:224–237

    Article  MATH  Google Scholar 

  7. Himmelsbach M, Luettel T, Wuensche H-J (2009) Real-time object classification in 3d point clouds using point feature histograms. In: Proceedings of the 2009 IEEE/RSJ international conference on intelligent robots and systems, IROS’09. IEEE Press, Piscataway, pp 994–10000

  8. Holzinger A, Malle B, Bloice M, Wiltgen M, Ferri M, Stanganelli I, Hofmann-Wellenhof R (2014) On the generation of point cloud data sets: Step one in the knowledge discovery process. Lect Notes Comput Sci 8401:57–80

    Article  Google Scholar 

  9. Holzinger A, Roth PM, Malle B, Kieseberg P, Mller H, Reihs R, Zatloukal K (2017) Machine learning and knowledge extraction in digital pathology needs an integrative approach. In: Towards integrative machine learning and knowledge extraction, Springer Lecture Notes in Artificial Intelligence, pp 13–50

  10. Hu X, Hu Y (2016) Deep-learning-based classification for dtm extraction from als point cloud. Remote Sens 8(9):730.1–16

    Google Scholar 

  11. Husain F, Dellen L, Torras C (2014) Recognizing point clouds using conditional random fields. In: 2014 22nd international conference on pattern recognition, pp 4257–4262

  12. Jin H, Wang X, Zhong Z, Hua J (2017) Robust 3d face modeling and reconstruction from frontal and side images. Comput Aided Geom Des 50:1–13

    Article  MathSciNet  MATH  Google Scholar 

  13. Kang Z, Yang J, Zhong R (2017) A bayesian-network-based classification method integrating airborne lidar data with optical images. IEEE Journal Of Selected Topics In Applied Earth Observations And Remote Sensing 10(4):1651–1661

    Article  Google Scholar 

  14. Kumar S, Hebert M (2006) Discriminative random fields. Int J Comput Vision 68(2):179–201

    Article  Google Scholar 

  15. Lafferty JD, McCallum A, Pereira FCN (2001) Conditional random fields: probabilistic models for segmenting and labeling sequence data. In: Proceedings of the eighteenth international conference on machine learning, ICML ’01. Morgan Kaufmann Publishers Inc, San Francisco, pp 282–289

  16. Lalonde JF, Vandapel N, Huber DF, Hebert M (2006) Natural terrain classification using three-dimensional ladar data for ground robot mobility. J Field Robot 23(10):839–861

    Article  Google Scholar 

  17. Lang D, Friedmann S, Paulus D (2016) Adaptivity of conditional random field based outdoor point cloud classification. Pattern Recog Image Anal 26(2):309–315

    Article  Google Scholar 

  18. Li H, Liu X, Zhang X, Yan D (2017) A semi-automatic 3d point cloud classification method based on probability mixture of local shape features. Journal of Zhejiang University(Science Edition) 44(1):1–8

    MathSciNet  Google Scholar 

  19. Liu X, Li H, Meng W, Xiang S, Zhang X (2017) E-Learning and Games. In: Tian F, Gatzidis C, El Rhalibi A, Tang W, Charles F (eds). Springer International Publishing, Cham, pp 115–137

  20. Maligo A, Lacroix S (2017) Classification of outdoor 3d lidar data based on unsupervised gaussian mixture models. IEEE Trans Autom Sci Eng 14(1):5–16

    Article  Google Scholar 

  21. Mount DM (2012) Ann programming manual. http://www.cs.umd.edu/~mount/ANN/Files/1.1, 2006. Accessed April 6

  22. Munoz D, Vandapel N, Hebert M (2008) Directional associative Markov network for 3-d point cloud classification. In: International symposium on 3-d data processing, visualization, and transmission

  23. Munoz D, Bagnell AJ (Drew), Vandapel N, Hebert M (2009) Contextual classification with functional max-margin Markov networks. In: IEEE computer society conference on Computer Vision and Pattern Recognition (CVPR), Pittsburgh, PA

  24. Najafi M, Namin ST, Salzmann M, Petersson L (2014) Non-associative higher-order Markov networks for point cloud classification. Springer International Publishing, Cham, pp 500–515

    Google Scholar 

  25. Ni H, Lin X, Zhang J (2017) Classification of als point cloud with improved point cloud segmentation and random forests. Remote Sens 9(3):288.1–34

    Article  Google Scholar 

  26. Niemeyer J, Rottensteiner F, Soergel U (2012) Conditional random fields for lidar point cloud classification in complex urban areas. ISPRS Ann Photogramm Remote Sens Spat Inf Sci I-3(I-3):263–268

    Article  Google Scholar 

  27. Niemeyer J, Rottensteiner F, Soergel U, Heipke C (2016) Hierarchical higher order crf for the classification of airborne lidar point clouds in urban areas. ISPRS Int Arch Photogramm Remote Sens Spat Inf Sci XLI-B3:655–662

    Article  Google Scholar 

  28. Paulus S, Dupuis J, Mahlein AK, Kuhlmann H (2013) Surface feature based classification of plant organs from 3d laserscanned point clouds for plant phenotyping. BMC Bioinforma 14(1):1–12

    Article  Google Scholar 

  29. Plaza-Leiva V, Gomez-Ruiz JA, Mandow A, Garciá-Cerezo A (2017) Voxel-based neighborhood for spatial shape pattern classification of lidar point clouds with supervised learning. Sensors 17(3):594.1–17. https://doi.org/10.3390/s17030594

    Article  Google Scholar 

  30. Rodríguez-Cuenca B, García-cortés S, Ordóñez C, Alonso M (2015) Automatic detection and classification of pole-like objects in urban point cloud data using an anomaly detection algorithm. Remote Sens 7(10):12680–12703

    Article  Google Scholar 

  31. Rumelhart DE, Hinton GE, Williams RJ (1988) Learning representations by back-propagating errors. In: Anderson JA, Rosenfeld E (eds) Neurocomputing: foundations of research. MIT Press, Cambridge, pp 696–699

  32. Rusu RB, Blodow N, Beetz M (2009) Fast point feature histograms (fpfh) for 3d registration. In: IEEE international conference on robotics and automation, pp 3212–3217

  33. Rutzinger M, Höfle B, Hollaus M, Pfeifer N (2008) Object-based point cloud analysis of full-waveform airborne laser scanning data for urban vegetation classification. Sensors 8(8):4505–4528

    Article  Google Scholar 

  34. Shapovalov R, Velizhev A, Barinova O (2010) Non-associative Markov networks for 3d point cloud classification. In: Isprs XXXVIII-3A, France, pp 103–108

  35. Specht DF (1990) Probabilistic neural networks. Neural Netw 3(1):109–118

    Article  Google Scholar 

  36. Sutton C, McCallum A (2012) An introduction to conditional random fields. Found Trends Mach Learn 4(4):267–373

    Article  MATH  Google Scholar 

  37. Vosselman G (2013) Point cloud segmentation for urban scene classification. ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-7/W2(7):257–262

    Article  Google Scholar 

  38. Wang Z, Zhang L, Fang T, Mathiopoulos PT (2015) A multiscale and hierarchical feature extraction method for terrestrial laser scanning point cloud classification. IEEE Trans Geosci Remote Sens 53(5):2409–2425

    Article  Google Scholar 

  39. Weinmann M, Jutzi B, Hinz S, Mallet C (2015) Semantic point cloud interpretation based on optimal neighborhoods, relevant features and efficient classifiers. Isprs J Photogramm Remote Sens 105:286–304

    Article  Google Scholar 

  40. Wolf D, Prankl J, Vincze M (2015) Fast semantic segmentation of 3d point clouds using a dense crf with learned parameters. In: IEEE international conference on robotics and automation, pp 4867–4873

  41. Xiang S, Zhang F, Zhang C, Zhang C (2006) Interactive visual object extraction based on belief propagation. In: Proceedings of the 13th international conference on multimedia modeling - Volume Part I, MMM’07. Springer, Berlin, pp 24–33

  42. Yang J, Cao Z, Zhang Q (2016) A fast and robust local descriptor for 3d point cloud registration. Inf Sci 346(c):163–179

    Article  Google Scholar 

  43. Zhang X, Li H, Cheng Z, Zhang Y (2009) Robust curvature estimation and geometry analysis of 3d point cloud surfaces. J Inf Comput Sci 6(5):1983–1990

    Google Scholar 

  44. Zhang X, Li H, Dai M, Ma W (2014) Data-driven synthetic modeling of trees. IEEE Trans Vis Comput Graph 20(9):1214–1226

    Article  Google Scholar 

  45. Zhang Z, Zhang L, Tong X, Mathiopoulos PT (2016) A multilevel point-cluster-based discriminative feature for als point cloud classification. IEEE Trans Geosci Remote Sens 54(6):3309–3321

    Article  Google Scholar 

Download references

Acknowledgements

This work is partly supported by the Fundamental Research Funds for the Central Universities(NO.2015ZCQ-LY-01), and partly supported by National Natural Science Foundation of China with Nos. 61372190, 61571439, 61561003, 61502490 and 61501464, and partly supported by Project 6140001010207.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongjun Li.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Meng, W., Liu, X. et al. Parameter optimization criteria guided 3D point cloud classification. Multimed Tools Appl 78, 5081–5104 (2019). https://doi.org/10.1007/s11042-018-6838-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-018-6838-z

Keywords

Navigation