Skip to main content
Log in

A new thermal infrared and visible spectrum images-based pedestrian detection system

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In this paper, we propose a hybrid system for pedestrian detection, in which both thermal and visible images of the same scene are used. The proposed method is achieved in two basic steps: (1) Hypotheses generation (HG) where the locations of possible pedestrians in an image are determined and (2) hypotheses verification (HV), where tests are done to check the presence of pedestrians in the generated hypotheses. HG step segments the thermal image using a modified version of OTSU thresholding technique. The segmentation results are mapped into the corresponding visible image to obtain the regions of interests (possible pedestrians). A post-processing is done on the resulting regions of interests to keep only significant ones. HV is performed using random forest as classifier and a color-based histogram of oriented gradients (HOG) together with the histograms of oriented optical flow (HOOF) as features. The proposed approach has been tested on OSU Color-Thermal, INO Video Analytics and LITIV data sets and the results justify its effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Akhloufi MA, Porcher C, Bendada A (2013) Fusion of thermal infrared and visible spectrum images for robust pedestrian tracking. In: Proceedings of SPIE, volume, 9076

  2. Ansari M El, Lahmyed R, Tremeau A (2018) A hybrid pedestrian detection system based on visible images and lidar data. In: Proceedings of the 13th international joint conference on computer vision, imaging and computer graphics theory and applications - volume 5: VISAPP, pages 325–334. INSTICC, SciTePress

  3. Bay H, Ess A, Tuytelaars T, Gool LV (2008) Speeded-up robust features (surf). Comput Vis Image Underst 110(3):346–359

    Article  Google Scholar 

  4. Breiman L (2001) Random forests. Mach Learn 45(1):5–32

    Article  MATH  Google Scholar 

  5. Castillo JC, Serrano-Cuerda J, Sokolova MV, Costa A, Novais P (2012) Multispectrum video for proactive response in intelligent environments. In: 2012 8th international conference on intelligent environments (IE). IEEE, pp 178–185

  6. Charfi S, Ansari M El (2018) Computer-aided diagnosis system for colon abnormalities detection in wireless capsule endoscopy images. Multimedia Tools and Applications 77(3):4047–4064

    Article  Google Scholar 

  7. Choi S, Kim E, Lee K, Oh S (2017) Real-time nonparametric reactive navigation of mobile robots in dynamic environments. Robot Auton Syst 91:11–24

    Article  Google Scholar 

  8. Christianini N, Shawe-Taylor J (2000) An introduction to support vector machines and other kernel-based learning methods. Cambridge University Press, United Kingdom

    Book  Google Scholar 

  9. Cuntoor N, Kale A, Chellappa R (2003) Combining multiple evidences for gait recognition. In: 2003 international conference on multimedia and Expo, 2003. ICME’03. Proceedings, vol 3. IEEE, pp III–113

  10. Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. In: IEEE computer society conference on computer vision and pattern recognition, 2005. CVPR 2005, volume 1. IEEE, pp 886–893

  11. Davis JW, Sharma V (2007) Background-subtraction using contour-based fusion of thermal and visible imagery. Comput Vis Image Underst 106(2):162–182

    Article  Google Scholar 

  12. Dollár P, Appel R, Belongie S, Perona P (2014) Fast feature pyramids for object detection. IEEE Trans Pattern Anal Mach Intell 36(8):1532–1545

    Article  Google Scholar 

  13. Elguebaly T, Bouguila N (2011) A nonparametric bayesian approach for enhanced pedestrian detection and foreground segmentation. In: 2011 IEEE computer society conference on computer vision and pattern recognition workshops (CVPRW). IEEE, pp 21–26

  14. Elguebaly T, Bouguila N (2013) Finite asymmetric generalized gaussian mixture models learning for infrared object detection. Comput Vis Image Underst 117(12):1659–1671

    Article  Google Scholar 

  15. Ellahyani A, Ansari M El, Jaafari I El (2016) Traffic sign detection and recognition based on random forests. Appl Soft Comput 46:805–815

    Article  Google Scholar 

  16. Fendri E, Boukhriss RR, Hammami M (2017) Fusion of thermal infrared and visible spectra for robust moving object detection. Pattern Anal Applic 20(4):907–926

    Article  MathSciNet  Google Scholar 

  17. Foster JP, Nixon MS, Prügel-Bennett A (2003) Automatic gait recognition using area-based metrics. Pattern Recogn Lett 24(14):2489–2497

    Article  Google Scholar 

  18. Gascuena JM, Serrano-Cuerda J, Castillo JC, Fernández-Caballero A, López MT (2014) A multi-agent system for infrared and color video fusion. In: Trends in practical applications of heterogeneous multi-agent systems. The PAAMS collection. Springer, pp 131–138

  19. Gavrila DM, Munder S (2007) Multi-cue pedestrian detection and tracking from a moving vehicle. Int J Comput Vis 73(1):41–59

    Article  Google Scholar 

  20. Ge J, Luo Y, Tei G (2009) Real-time pedestrian detection and tracking at nighttime for driver-assistance systems. IEEE Trans Intell Transp Syst 10(2):283–298

    Article  Google Scholar 

  21. Guo L, Ge P-S, Zhang M-H, Li L-H, Zhao Y-B (2012) Pedestrian detection for intelligent transportation systems combining adaboost algorithm and support vector machine. Expert Systems with Applications 39(4):4274–4286

    Article  Google Scholar 

  22. Herrmann C, Müller T, Willersinn D, Beyerer J (2016) Real-time person detection in low-resolution thermal infrared imagery with mser and cnns. In: SPIE security+ defence, pp 99870I–99870I. International society for optics and photonics

  23. Huang D-Y, Wang C-H (2009) Optimal multi-level thresholding using a two-stage otsu optimization approach. Pattern Recogn Lett 30(3):275–284

    Article  Google Scholar 

  24. Hwang S, Park J, Kim N, Choi Y, Kweon IS (2015) Multispectral pedestrian detection benchmark dataset and baseline. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1037–1045

  25. Ino, “ino video analytics dataset.” https://www.ino.ca/en/video-analytics-dataset/. Accessed 6 Sept 2017

  26. John V, Mita S, Liu Z, Qi B (2015) Pedestrian detection in thermal images using adaptive fuzzy c-means clustering and convolutional neural networks. In: 2015 14th IAPR international conference on machine vision applications (MVA). IEEE, pp 246–249

  27. Jungling K, Arens M (2009) Feature based person detection beyond the visible spectrum. In: IEEE computer society conference on computer vision and pattern recognition workshops, 2009. CVPR Workshops 2009. IEEE, pp 30–37

  28. Källhammer J-E, Smith K, Matsangas P (2016) Modeling ratings of in-vehicle alerts to pedestrian by leveraging field operational tests data in a controlled laboratory study. Transportation Research Part F: Traffic Psychology and Behaviour

  29. Kassani PH, Teoh ABJ (2016) A new sparse model for traffic sign classification using soft histogram of oriented gradients. Appl Soft Comput

  30. Kim K, Chalidabhongse TH, Harwood D, Davis L (2005) Real-time foreground–background segmentation using codebook model. Real-Time Image 11(3):172–185

    Article  Google Scholar 

  31. Lahmyed R, Ansari M El (2016) Multisensors-based pedestrian detection system. In: 2016 IEEE/ACS 13th International Conference of Computer Systems and Applications (AICCSA). IEEE, pp 1–4

  32. Lee L, Dalley G, Tieu K (2003) Learning pedestrian models for silhouette refinement. In: ICCV, vol 1, pp 663–670

  33. Level Otsu N (1979) A threshold selection method from gray-level histogram. IEEE Trans Syst Man Cybern B Cybern 9(1):62–66

    Article  Google Scholar 

  34. Li H, Zhu J, Tao D (2018) Asymmetric projection and dictionary learning with listwise and identity consistency constraints for person re-identification. IEEE Access 6:37977–37990

    Article  Google Scholar 

  35. Li Jianfu, Gong Weiguo, Li W, Liu X (2010) Robust pedestrian detection in thermal infrared imagery using the wavelet transform. Infrared Phys Technol 53(4):267–273

    Article  Google Scholar 

  36. Li Z, Bo Wu, Nevatia S (2007) Pedestrian detection in infrared images based on local shape features. In: 2007 IEEE conference on computer vision and pattern recognition CVPR’07. IEEE, pp 1–8

  37. Liang C-W, Juang C-F (2015) Moving object classification using local shape and hog features in wavelet-transformed space with hierarchical svm classifiers. Appl Soft Comput 28:483–497

    Article  Google Scholar 

  38. Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–110

    Article  Google Scholar 

  39. Lucas BD, Kanade T, et al (1981) An iterative image registration technique with an application to stereo vision

  40. Morales Y, Miyashita T, Hagita N (2017) Social robotic wheelchair centered on passenger and pedestrian comfort. Robot Auton Syst 87:355–362

    Article  Google Scholar 

  41. Nanda H, Davis L (2002) Probabilistic template based pedestrian detection in infrared videos. In: Intelligent vehicle symposium 2002. IEEE, volume 1, pp 15–20

  42. Ojala T, Pietikäinen M, Harwood D (1996) A comparative study of texture measures with classification based on featured distributions. Pattern Recogn 29(1):51–59

    Article  Google Scholar 

  43. Ouloul IM, Moutakki Z, Afdel K, Amghar A (2018) Improvement of age estimation using an efficient wrinkles descriptor. Multimedia Tools and Applications, pp 1–35

  44. Perš J, Kristan M, Perše M, Kovačič S (2007) Motion based human identification using histograms of optical flow. na

  45. Perš J, Sulić V, Kristan M, Perše M, Polanec K, Kovačič S (2010) Histograms of optical flow for efficient representation of body motion. Pattern Recog Lett 31(11):1369–1376

    Article  Google Scholar 

  46. Premebida C, Ludwig O, Nunes U (2009) Lidar and vision-based pedestrian detection system. J Field Rob 26(9):696–711

    Article  Google Scholar 

  47. Qingbo J, Enze Z, Xinqi Y, Yu X, Yun L (2016) Face recognition method based on hog and dmma from single training sample. Multimedia Tools and Applications, 75(21):13163–13177

    Article  Google Scholar 

  48. Radman A, Suandi SA (2018) Robust face pseudo-sketch synthesis and recognition using morphological-arithmetic operations and hog-pca. Multimedia Tools and Applications. pp 1–22

  49. San-Biagio M, Crocco M, Cristani M (2012) Recursive segmentation based on higher order statistics in thermal imaging pedestrian detection. In: 2012 5th international symposium on communications control and signal processing (ISCCSP). IEEE, pp 1–4

  50. Serrano-Cuerda J (2014) Robust human detection through fusion of color and infrared video. ELCVIA: Electronic Letters On Computer Vision And Image Analysis 13(2):0017–18

    Article  Google Scholar 

  51. Souaidi M, Abdelouahad AA, Ansari M El (2017) A fully automated ulcer detection system for wireless capsule endoscopy images. In: 2017 International Conference on Advanced Technologies for Signal and Image Processing (ATSIP). IEEE, pP 1–6

  52. Souaidi M, Abdelouahed AA, Ansari M El (2018) Multi-scale completed local binary patterns for ulcer detection in wireless capsule endoscopy images. Multimedia Tools and Applications, pp 1–18

  53. Souaidi M, Charfi S, Abdelouahad AA, Ansari M El (2018) New features for wireless capsule endoscopy polyp detection. In: 2018 international conference on intelligent systems and computer vision (ISCV). IEEE, pp 1–6

  54. Sun Hao, Wang Cheng, Wang B, El-Sheimy N (2011) Pyramid binary pattern features for real-time pedestrian detection from infrared videos. Neurocomputing 74 (5):797–804

    Article  Google Scholar 

  55. Tao D, Guo Y, Li Y, Gao X (2018) Tensor rank preserving discriminant analysis for facial recognition. IEEE Trans on Image Process 27(1):325–334

    Article  MathSciNet  MATH  Google Scholar 

  56. Torabi A, Massé G, Bilodeau G-A (2012) An iterative integrated framework for thermal–visible image registration, sensor fusion, and people tracking for video surveillance applications. Comput Vis Image Underst 116(2):210–221

    Article  Google Scholar 

  57. Usher JM, McCool R, Strawderman L, Carruth DW, Bethel CL, May DC (2017) Simulation modeling of pedestrian behavior in the presence of unmanned mobile robots. Simul Model Pract Theory 75:96–112

    Article  Google Scholar 

  58. Vapnik VN, Vapnik V (1998) Statistical learning theory, volume 1. Wiley, New York

    MATH  Google Scholar 

  59. Wagner J, Fischer V, Herman M, networks SB (2016) Multispectral pedestrian detection using deep fusion convolutional neural. In: 24th European symposium on artificial neural networks computational intelligence and machine learning (ESANN), pp 509–514

  60. Wang Y, Wang Z, Tao D, Zhuo S, Xu X, Pu S, Song M (2017) Allfocus: patch-based video out-of-focus blur reconstruction. IEEE Trans Circuits Syst Video Technol 27(9):1895–1908

    Article  Google Scholar 

  61. Yang T, Fu D, Pan S (2017) Pedestrian tracking for infrared image sequence based on trajectory manifold of spatio-temporal slice. Multimedia Tools and Applications 76(8):11021–11035

    Article  Google Scholar 

  62. Zhang J, Li F-W, Nie W-Z, Li W-H, Su Y-T (2016) Visual attribute detction for pedestrian detection. Multimedia Tools and Applications, pp 1–18

  63. Zin TT, Takahashi H, Hama H, Toriu T (2011) Fusion of infrared and visible images for robust person detection. INTECH Open Access Publisher

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Redouan Lahmyed.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lahmyed, R., El Ansari, M. & Ellahyani, A. A new thermal infrared and visible spectrum images-based pedestrian detection system. Multimed Tools Appl 78, 15861–15885 (2019). https://doi.org/10.1007/s11042-018-6974-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-018-6974-5

Keywords

Navigation