Skip to main content
Log in

Comprehensive image quality assessment via predicting the distribution of opinion score

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Image quality assessment is a challenge problem in image processing area. Previous works usually predict the mean opinion score (MOS) to evaluate image quality. However, it is found that the distribution of opinion scores provides richer and more precise semantics information. Therefore, in this work, we focus on the distribution of opinion scores (DOS) and aims to comprehensively evaluate image quality via automatically predicting DOS. Specifically, we first extract image features via convolutional neural network and then adopt the label distribution support vector regressor (LDSVR) algorithm to predict score distribution. To the best of our knowledge, we are the first to introduce label distribution learning approach for image quality assessment. Extensive experiments have been carried out and validate that the proposed algorithm can well predict the DOS and provide a comprehensive assessment to image quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. We linear map score range from TID to HDR for fair comparison.

References

  1. Cabral RS, Torre F, Costeira JP, Bernardino A (2011) Matrix completion for multi-label image classification. In: Advances in neural information processing systems, pp 190–198

  2. Ciocca G, Corchs S, Gasparini F, Schettini R (2014) How to assess image quality within a workflow chain: an overview. Int J Digit Libr 15(1):1–25

    Article  Google Scholar 

  3. Donahue J, Jia Y, Vinyals O, Hoffman J, Zhang N, Tzeng E, Darrell T (2014) Decaf: a deep convolutional activation feature for generic visual recognition. In: International conference on machine learning, pp 647–655

  4. Drucker H, Burges CJ, Kaufman L, Smola AJ, Vapnik V (1997) Support vector regression machines. In: Advances in neural information processing systems, pp 155–161

  5. Fattal R, Lischinski D, Werman M (2002) Gradient domain high dynamic range compression. ACM Trans Graph 21(3):249–256

    Article  Google Scholar 

  6. Gatys L, Ecker AS, Bethge M (2015) Texture synthesis using convolutional neural networks, pp 262–270

  7. Gatys LA, Ecker AS, Bethge M (2015) A neural algorithm of artistic style. Computing research repository. arXiv:1508.06576

  8. Geng X (2013) Label distribution learning. IEEE Trans Knowl Data Eng 28 (7):1734–1748

    Article  Google Scholar 

  9. Geng X, Peng H (2015) Pre-release prediction of crowd opinion on movies by label distribution learning. In: IEEE international conference on artificial intelligence, pp 3511–3517

  10. Geng X, Yin C, Zhou ZH (2013) Facial age estimation by learning from label distributions. IEEE Trans Pattern Anal Mach Intell 35(10):2401–12

    Article  Google Scholar 

  11. Guo Y, Liu Y, Bakker EM, Guo Y, Lew MS (2018) CNN-RNN: a large-scale hierarchical image classification framework. Multimed Tools Appl 77(8):10, 251–10, 271

    Article  Google Scholar 

  12. HDRsoft (Accessed on May, 2016) Photomatix. http://www.hdrsoft.com/

  13. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: IEEE conference on computer vision and pattern recognition, pp 770–778

  14. Jing P, Su Y, Nie L, Gu H, Liu J, Wang M (2018) A framework of joint low-rank and sparse regression for image memorability prediction. Accepted by IEEE Transactions on Circuits and Systems for Video Technology, pp 1–1. https://doi.org/10.1109/TCSVT.2018.2832095

  15. Johnson J, Alahi A, Fei-Fei L (2016) Perceptual losses for real-time style transfer and super-resolution. In: European conference on computer vision. Springer, pp 694–711

  16. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: International conference on neural information processing systems, pp 1097–1105

  17. Kundu D, Ghadiyaram D, Bovik AC, Evans BL (2017) No-reference quality assessment of tone-mapped HDR pictures. IEEE Trans Image Process 26(6):2957–2971

    Article  MathSciNet  MATH  Google Scholar 

  18. Larson GW, Rushmeier H, Piatko C (1997) A visibility matching tone reproduction operator for high dynamic range scenes. IEEE Trans Vis Comput Graph 3(4):291–306

    Article  Google Scholar 

  19. Li J, Lu K, Huang Z, Zhu L, Tao Shen H (2018) Transfer independently together: a generalized framework for domain adaptation. Accepted by IEEE Transactions on Cybernetics. https://doi.org/10.1109/TCYB.2018.2820174

  20. Mittal A, Moorthy AK, Bovik AC (2012) No-reference image quality assessment in the spatial domain. IEEE Trans Image Process 21(12):4695–4708

    Article  MathSciNet  MATH  Google Scholar 

  21. Moorthy AK, Bovik AC (2011) Blind image quality assessment: from natural scene statistics to perceptual quality. IEEE Trans Image Process 20(12):3350–3364

    Article  MathSciNet  MATH  Google Scholar 

  22. Nie L, Wang M, Zha ZJ, Chua TS (2012) Oracle in image search: a content-based approach to performance prediction. ACM Trans Inf Syst 30(2):13, 1–13, 23

    Article  Google Scholar 

  23. Nocedal J, Wright SJ (2006) Numerical optimization. Springer, Berlin

    MATH  Google Scholar 

  24. Pece F, Kautz J (2013) Bitmap movement detection: HDR for dynamic scenes. Journal of Virtual Reality and Broadcasting 10(2):1–8

    Google Scholar 

  25. Pérez-Cruz F, Alarcón-Diana PL, Navia-Vázquez A, Artés-Rodríguez A (2001) Fast training of support vector classifiers. In: Advances in neural information processing systems, pp 734–740

  26. Pietra SD, Pietra VD, Lafferty J (1995) Inducing features of random fields. IEEE Trans Pattern Anal Mach Intell 19(4):380–393

    Article  Google Scholar 

  27. Ponomarenko N, Ieremeiev O, Lukin V, Egiazarian K, Jin L, Astola J, Vozel B, Chehdi K, Carli M, Battisti F (2013) Color image database TID2013: peculiarities and preliminary results. In: European workshop on visual information processing, pp 106–111

  28. Qi S, Jing P, Wang X, Nie L (2016) Quality biased multimedia data retrieval in microblogs. J Vis Commun Image Represent 40:838–846

    Article  Google Scholar 

  29. Raman S, Chaudhuri S (2009) Bilateral filter based compositing for variable exposure photography. In: Eurographics (short papers), pp 1–4

  30. Razavian AS, Azizpour H, Sullivan J, Carlsson S (2014) CNN Features off-the-shelf: an astounding baseline for recognition. In: IEEE conference on computer vision and pattern recognition workshops, pp 512–519

  31. Rubin TN, Chambers A, Smyth P, Steyvers M (2012) Statistical topic models for multi-label document classification. Mach Learn 88(1–2):157–208

    Article  MathSciNet  MATH  Google Scholar 

  32. Saad MA, Bovik AC, Charrier C (2012) Blind image quality assessment: a natural scene statistics approach in the DCT domain. IEEE Trans Image Process 21 (8):3339–3352

    Article  MathSciNet  MATH  Google Scholar 

  33. Sánchez-Fernández M, de Prado-Cumplido M, Arenas-García J, Pérez-Cruz F (2004) SVM multiregression for nonlinear channel estimation in multiple-input multiple-output systems. IEEE Trans Signal Process 52(8):2298–2307

    Article  MathSciNet  MATH  Google Scholar 

  34. Schölkopf B, Smola A (2001) Learning with kernels: support vector machines, regularization, optimization, and beyond. MIT Press, Cambridge

    Google Scholar 

  35. Sheikh HR, Bovik AC, De VG (2005) An information fidelity criterion for image quality assessment using natural scene statistics. IEEE Trans Image Process 14 (12):2117–2128

    Article  Google Scholar 

  36. Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv:14091556

  37. Song S, Huang H, Ruan T (2018) Abstractive text summarization using LSTM-CNN based deep learning. Accepted by Multimedia Tools and Applications. https://doi.org/10.1007/s11042-018-5749-3

  38. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with convolutions. In: IEEE conference on computer vision and pattern recognition, pp 1–9

  39. Vedaldi A, Lenc K (2015) MatConvNet – convolutional neural network for MATLAB. In: ACM international conference on multimedia, pp 689–692

  40. Wang J, Zhao Y, Wu X, Hua XS (2011) A transductive multi-label learning approach for video concept detection. Pattern Recogn 44(10-11):2274–2286

    Article  MATH  Google Scholar 

  41. Wang D, Wang B, Zhao S, Yao H, Liu H (2017) Off-the-shelf CNN features for 3D object retrieval. Multimedia Tools and Applications (1):1–17

  42. Wei X, Huang H, Nie L, Feng F, Hong R, Chua TS (2018) Quality matters: assessing cQA pair quality via transductive multi-view learning. In: International joint conferences on artificial intelligence

  43. Xie L, Shen J, Han J, Zhu L, Shao L (2017) Dynamic multi-view hashing for online image retrieval. In: International joint conferences on artificial intelligence

  44. Xu C, Yang J, Gao J (2017) Coupled-learning convolutional neural networks for object recognition. Accepted by Multimedia Tools and Applications. https://doi.org/10.1007/s11042-017-5262-0

  45. Zhu L, Huang Z, Chang X, Song J, Shen HT (2017) Exploring consistent preferences: discrete hashing with pair-exemplar for scalable landmark search. In: Proceedings of the 2017 ACM on multimedia conference, pp 726–734

  46. Zhu L, Shen J, Xie L, Cheng Z (2017) Unsupervised visual hashing with semantic assistant for content-based image retrieval. IEEE Trans Knowl Data Eng 29 (2):472–486

    Article  Google Scholar 

  47. Zhu L, Huang Z, Li Z, Xie L, Shen HT (2018) Exploring auxiliary context: discrete semantic transfer hashing for scalable image retrieval. IEEE Trans Neural Netw Learn Syst 29(11):5264–5276

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Liu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, A., Wang, J., Liu, J. et al. Comprehensive image quality assessment via predicting the distribution of opinion score. Multimed Tools Appl 78, 24205–24222 (2019). https://doi.org/10.1007/s11042-018-6985-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-018-6985-2

Keywords