Skip to main content
Log in

A Face Detection Method Based on Cascade Convolutional Neural Network

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Cascade has been widely used in face detection where classifier with low computational cost can be firstly used to shrink most of the background while keeping the recall. In this paper, a new cascaded convolutional neural network method consisting of two main steps is proposed. During the first stage, low-pixel candidate window is used as an input such that the shallow convolutional neural network quickly extracts the candidate window. In the second stage, the window from the former stage is resized and used as an input to the corresponding network layer respectively. During the training period, joint online training is conducted for hard samples and the soft non-maximum suppression algorithm is used to test on the dataset. The whole network achieves improved performance on the FDDB and PASCAL face datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5:
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Bourdev L, Brandt J (2005) Robust Object Detection via Soft Cascade, Computer Vision and Pattern Recognition, 236–243

  2. Chen D, Ren S, Wei Y, Cao X, Sun J (2014) Joint cascade face detection and alignment, in European Conference on Computer Vision, 109–122

  3. Dollar P, Tu Z, Perona P, Belongie S (2009) Integral channel features, in BMVA

  4. Dollár P, Appel R, Belongie S, Perona P (2014) Fast feature pyramids for object detection. IEEE Trans Pattern Anal Mach Intell 36(8):1532–1545

    Article  Google Scholar 

  5. Farfade SS, Saberian M, Li L, Multi-view face detection using deep convolutional neural networks, ICMR2015

  6. Girshick R, Fast R-CNN, ICCV2015

  7. Girshick R, Donahue J, Darrell T, Malik J, Rich feature hierarchies for accurate object detection and semantic segmentation, IEEE CVPR2014

  8. He K, Zhang X, Ren S et al (2015) Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition. IEEE Trans Pattern Anal Mach Intell 37(9):1904

    Article  Google Scholar 

  9. Huang L, Yang Y, Deng Y, Yu Y (2015) DenseBox: Unifying Landmark Localization with End to End Object Detection arXiv:1509.04874

  10. Jain V, Learned-Miller E (2010) FDDB: A benchmark for face detection in unconstrained settings, Tech. Rep. UM-CS-2010-009, University of Massachusetts. In: Amherst

    Google Scholar 

  11. Krizhevsky A, Sutskever I, Hinton G (2012) Imagenet classification with deep convolutional neural networks. NIPS 1097–1105

  12. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436–444

    Article  Google Scholar 

  13. Li H, Lin Z, Shen X, Brandt J, Hua G (2015) A convolutional neural network cascade for face detection computer vision and pattern recognition

  14. Li J, Lu K, Huang Z, Zhu L, Shen HT Transfer independently together: a generalized framework for domain adaption. IEEE Trans Cybern, Digit Object Identifier. https://doi.org/10.1109/TCYB.2018.2820174

  15. Liu L, Ouyang W, Wang X, Fieguth P, Chen J, Liu X, Pietikäinen M (2018) Deep learning for generic object detection: a survery, arXiv:1809.02165v1 [cs.CV] 6 Sep

  16. Najibi M, Samangouei P, Chellapa R, Davis LS, SSH: single stage headless face detector, ICCV2007

  17. Nie L, Wang X, Zhang J, He X, Zhang H, Hong R, Tian Q, Enhancing mircro-video understanding by harnessing external sounds, ACMM2017

  18. Peiyun H, Ramanan D (2017) Finding tiny faces, CVPR

  19. Ren S, He K, Girshick R, Sun J, (2016) Faster R-CNN: Towards real-Time object detection with region proposal networks, IEEE CVPR 1137–1149

  20. Shelhamer E, Long J, Darrell T (2014) Fully Convolutional Networks for Semantic Segmentation. IEEE Trans Pattern Anal Mach Intell 39(4):640

    Article  Google Scholar 

  21. Shen F, Xu Y, Liu L, Yang Y, Huang Z, Shen HT, Unsupervised Deep Hashing with Similarity-Adaptive and Discrete Optimization, IEEE Transactions on Pattern Analysis and Machine Intelligence. https://doi.org/10.1109/TPAMI.2018.2789887

  22. Song X, Feng F, Han X, Yang X, Liu W, Nie L Neural compatibility modeling with attentive knowledge distillation, SIGIR2018

  23. Tang X, Du DK, He Z, Liu J, (2018) PyramidBox: A Context-assisted Single Shot Face Detector. arXiv preprint arXiv:1803.07737

  24. Viola P, Jones M (2001) Rapid object detection using a boosted cascade of simple features, in Proceedings of the 19th Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2001, pp. 511–518. IEEE

  25. Wang X, Han TX, Yan S (2009) An hog-lbp human detector with partial occlusion handling, IEEE ICCV

  26. Wang H, Li Z, Ji X, Wang Y, Face R-CNN (2017) arXiv preprint arXiv:1706.01061

  27. Xie L, Shen J, Han J, Zhu L, Shao L, Dynamic multi-view hashing for online image retrieval, IJCAI2017

  28. Yan J, Lei Z, Wen L, Li S (2014) “The fastest deformable part model for object detection,” in IEEE Conference on Computer Vision and Pattern Recognition, 2497–2504

  29. Yan J, Zhang X, Lei Z, Li SZ (2014) Face detection by structural models. Image Vis Comput 32(10):790–799

    Article  Google Scholar 

  30. Yang MH, Kriegman D, Ahuja N (2002) Detecting faces in images: A survey, IEEE Trans. PAMI

  31. Yang S, Luo P, Loy CC, Tang X (2015) From facial parts responses to face detection: A deep learning approach, in IEEE International Conference on Computer Vision, 3676–3684

  32. Yang S, Luo P, Loy CC, Tang X (2018) Faceness-Net: face detection through deep facial part response. IEEE Trans Pattern Anal Mach Intell 40(8):1845–1859

    Article  Google Scholar 

  33. Zafeiriou S, Zhang C, Zhang Z (2015) A survey on face detection in the wild: past, present and future. Comput Vis Image Underst 138:1–24

    Article  Google Scholar 

  34. Zhan K, Zhang Z, Li Z, Qiao Y (2016) Joint face detection and alignment using multi-task cascade convolutional Networks. IEEE Signal process lett 23(10):1499–1503

    Article  Google Scholar 

  35. Zheng R, Yao C, Jin H, Zhou L, Zhang Q, Dong W (2015) Parallel key frame extraction for surveillance video service in a smart city. PLoS One 10(8):e0135694

    Article  Google Scholar 

  36. Zhu X, Ramanan D (2012) “Face detection, pose estimation, and landmark localization in the wild,” in IEEE Conference on Computer Vision and Pattern Recognition 2879–2886

  37. Zhu Q, Yeh MC, Cheng KT, Avidan S (2006) Fast human detection using a cascade of histograms of oriented gradients, IEEE CVPR

  38. Zhu L, Huang Z, Chang X, Song J, Shen HT, Exploring consistent preferences: discrete hashing with pair-exemplar for scalable landmark search, ACMM2017

  39. Zhu L, Huang Z, Li Z, Xie L, Shen HT (2018) Exploring auxiliary context: discrete semantic transfer hashing for scalable image retrieval. IEEE Trans NNLS 29(11):5264–5276

    MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation (NNSF) of China under Grant No. 61473086, 61603080 and 61773117. Jiangsu key R & D plan (No.BE2017157).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wankou Yang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, W., Zhou, L., Li, T. et al. A Face Detection Method Based on Cascade Convolutional Neural Network. Multimed Tools Appl 78, 24373–24390 (2019). https://doi.org/10.1007/s11042-018-6995-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-018-6995-0

Keywords