Abstract
This paper develops a new variation of deep belief networks which is evaluated on the basis of supervised classification of human actions and activities. The proposed multi-input 1-dimensional deep belief network (M1DBN) can work based on three inputs which contain different information structures. The multi input features helps M1DBN automatically search the solution space more accurately and extract high-level representations more efficiently. M1DBN utilizes three inputs to provide spatial, short-term and long-term information for the action and activity recognition. Spatial information can distinguish between human movements which have a high inter-class variation. However, regarding similar inter-class variations, a temporal description is used. Short-term and long-term inputs learn actions or activities for short and long video intervals, respectively. Experimental results show the superiority of this approach over state-of-the-art methods on KTH (97.04%), HMDB51 (67.19%), UCI-HAD (97.16%) and Skoda (93.28%) datasets. Also, a detailed explanation of learning, training and test procedures used in M1DBN are available.









Similar content being viewed by others
References
Access time: December 2, 2017. Available on: www.nada.kth.se/cvap/actions
Access time: December 2, 2017. Available on: serre-lab.clps.brown.edu/resource/hmdb-a-large-human-motion-database
Access time: July 4, 2018. Available on: https://archive.ics.uci.edu/ml/machine-learning-databases/00240
Access time: July 4, 2018. Available on: http://www.ife.ee.ethz.ch/research/activity-recognition-datasets.html
Alsheikh MA, Selim A, Niyato D, Doyle L, Lin S, Tan HP (2016) Deep activity recognition models with triaxial accelerometers/ AAAI Workshop: Artificial Intelligence Applied to Assistive Technologies and Smart Environments
Anguita D, Ghio A, Oneto L, Parra X, Reyes-Ortiz JL (2013) A public domain dataset for human activity recognition using smartphones. European Symposium on Artificial Neural Networks
Batra D, Chen T, Sukthankar R (2008) Space-time shapelets for action recognition. Proceedings of the Workshop on Motion and Video Computing
Bilinski P, Corvee E, Bak S (2013) Relative dense tracklets for human action recognition. IEEE International Conference and Workshops on Automatic Face and Gesture Recognition
Boyer WH (1984) CRC standard mathematical tables, 27th edn. CRC Press, Boca Raton
Cai Z, Wang L, Peng X (2014) Multi-view super vector for action recognition. IEEE conference on Computer Vision and Pattern Recognition
Chen J, Jin Q, Chao J (2012) Design of deep belief networks for short-term prediction of drought index using data in the Huaihe river basin. Math Probl Eng 2012:235929
Chen B, Ting J, Marlin B (2010) Deep learning of invariant spatio-temporal features from video. Neural Information Processing Systems Workshop
Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Fathi A, Mori G (2008) Action recognition by learning mid-level motion features. IEEE International Conference on Computer Vision and Pattern Recognition
Feichtenhofer C, Pinz A, Zisserman A (2016) Convolutional two-stream network fusion for video action recognition. IEEE Conference on Computer Vision and Pattern Recognition
Gilbert A, Illingworth J, Bowden R (2011) Action recognition using mined hierarchical compound features. IEEE Transactions on Pattern Analysis and Machine Intelligence
Gowda SN (2017) Human activity recognition using combinatorial Deep Belief Networks. IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)
Herath S, Harandi M, Porikli F (2017) Going deeper into action recognition: A survey. Image Vis Comput 60:4–21
Hinton GE (2007) Learning multiple layers of representation. Trends Cogn Sci 11:428–434
Hinton G (2014) Where do features come from? Cogn Sci 38:1078–1101
Hinton GE, Osindero S, Teh YW (2006) A fast learning algorithm for deep belief nets. Neural Comput 18:1527–1554
Jhuang H, Serre T, Wolf L (2007) A biologically inspired system for action recognition. IEEE International Conference on Computer Vision
Jiang W, Yin, Z (2015) Human activity recognition using wearable sensors by deep convolutional neural networks. the 23rd ACM international conference on Multimedia
Kovashka A, Grauman K (2010) Learning a hierarchy of discriminative space-time neighborhood features for human action recognition. IEEE Conference on Computer Vision and Pattern Recognition
Kuehne H, Jhuang H, Garrote E (2011) HMDB: a large video database for human motion recognition. IEEE International Conference on Computer Vision
Kumar RC, Bharadwaj SS, Sumukha BN, George, K (2016) Human activity recognition in cognitive environments using sequential ELM. In International IEEE Conference on Cognitive Computing and Information Processing
Laptev I, Marszalek M, Schmid C (2008) Learning realistic human actions from movies. IEEE Conference on Computer Vision and Pattern Recognition
Le QV, Zou WY, Yeung SY (2011) Learning hierarchical invariant spatio-temporal features for action recognition with independent subspace analysis. IEEE Conference on Computer Vision and Pattern Recognition
LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436–444
Li C, Chen C, Zhang B, Ye Q, Han J, Ji R (2017) Deep spatio-temporal manifold network for action recognition/ arXiv preprint arXiv:1705.03148
Lin SY, Lin YY, Chen CS (2017) Learning and inferring human actions with temporal pyramid features based on conditional random fields. IEEE International Conference on Acoustics, Speech and Signal Processing
Liu L, Shao L, Rockett P (2013) Boosted key-frame selection and correlated pyramidal motion-feature representation for human action recognition. Pattern Recognition
Liu W, Wang Z, Liu X, Zeng N, Liu Y, Alsaadi FE (2017) A survey of deep neural network architectures and their applications. Neurocomputing 234:11–26
Moeslund TB, Hilton A, Kruger V (2006) A survey of advances in vision-based human motion capture and analysis. Comput Vis Image Underst 104:90–127
Murad A, Pyun JY (2017) Deep recurrent neural networks for human activity recognition. Sensors 17:2556
Murahari VS, Ploetz T (2018) On attention models for human activity recognition. arXiv preprint arXiv:1805.07648
Nickfarjam AM, Najafabadi AP, Ebrahimpour-Komleh H (2014) Efficient parameter tuning for histogram of oriented gradients. IEEE International Conference on Electrical Engineering
Peng X, Wang L, Wang X (2016) Bag of visual words and fusion methods for action recognition: Comprehensive study and good practice. Computer Vision and Image Understanding
Perš J, Sulić V, Kristan M (2010) Histograms of optical flow for efficient representation of body motion. Pattern Recogn Lett 31:1369–1376
Poppe R (2010) A survey on vision-based human action recognition. Image Vis Comput 28:976–990
Rahmani H, Mian A, Shah M (2017) Learning a deep model for human action recognition from novel viewpoints. IEEE Transactions on Pattern Analysis and Machine Intelligence
Ravi D, Wong C, Lo B, Yang GZ (2016) Deep learning for human activity recognition: A resource efficient implementation on low-power devices. IEEE 13th International Conference on Wearable and Implantable Body Sensor Networks
Reddy KK, Shah M (2013) Recognizing 50 human action categories of web videos. Mach Vis Appl 24:971–981
Sharma S, Kiros R, Salakhutdinov R (2015) Action recognition using visual attention. arXiv preprint arXiv:1511.04119
Shi Y, Tian Y, Wang Y (2017) Sequential deep trajectory descriptor for action recognition with three-stream CNN. IEEE Transactions on Multimedia 19:1510–1520
Sun L, Jia K, Yeung DY, Shi BE (2015) Human action recognition using factorized spatio-temporal convolutional networks. IEEE International Conference on Computer Vision
Tang X, Bouzerdoum A, Phung SL (2015) Video classification based on spatial gradient and optical flow descriptors. IEEE International Conference on Digital Image Computing: Techniques and Applications
Tejero-de-Pablos A, Nakashima Y, Sato T, Yokoya N, Linna M, Rahtu E (2017) Summarization of user-generated sports video by using deep action recognition features. arXiv preprint arXiv:1709.08421
Twomey N, Diethe T, Fafoutis X, Elsts A, McConville R, Flach P, Craddock I (2018) A comprehensive study of activity recognition using accelerometers. Publisher of Open Access Journals, Journal of Informatics
Uddin MZ, Kim J (2017) A robust approach for human activity recognition using 3-D body joint motion features with deep belief network. KSII Transactions on Internet and Information Systems (TIIS) 11:1118–1133
Varol G, Laptev I, Schmid C (2017) Long-term temporal convolutions for action recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence
Wang H, Kläser A, Schmid C (2013) Dense trajectories and motion boundary descriptors for action recognition. International Journal of Computer Vision
Wang H, Kläser A, Schmid C, Liu CL (2011, June) Action recognition by dense trajectories. In: Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on (pp 3169–3176). IEEE.
Wang L, Qiao Y, Tang X (2013) Motionlets: Mid-level 3d parts for human motion recognition. IEEE Conference on Computer Vision and Pattern Recognition
Wang L, Qiao Y, Tang X (2015) Action recognition with trajectory pooled deep-convolutional descriptors. IEEE Conference on Computer Vision and Pattern Recognition
Wang H, Schmid C (2013) Action recognition with improved trajectories. IEEE International Conference on Computer Vision
Wang L, Suter D (2007) Learning and matching of dynamic shape manifolds for human action recognition. IEEE Trans Image Process 16:1646–1661
Wang H, Ullah MM, Klaser A (2009) Evaluation of local spatio-temporal features for action recognition. In BMVC 2009-British Machine Vision Conference
Wang L, Xiong Y, Wang Z (2015) Towards good practices for very deep two-stream convnets. arXiv preprint arXiv:1507.02159
Wen W, Cai R, Hao Z, Yang X, Li Y (2017) Recognizing activities from partially observed streams using posterior regularized conditional random fields. Neurocomputing 260
Xia L, Chen CC, Aggarwal JK (2012) View invariant human action recognition using histograms of 3d joints. IEEE Computer Society Workshops and Conference on Computer Vision and Pattern Recognition
Yalçın H (2016) Human activity recognition using deep belief networks. IEEE Signal Processing and Communication Application Conference (SIU)
Yuan C, Li X, Hu W (2013) 3d R transform on spatio-temporal interest points for action recognition. IEEE Conference on Computer Vision and Pattern Recognition
Zappi P, Lombriser C, Stiefmeier T, Farella E, Roggen D, Benini L, Tröster G (2008) Activity recognition from on-body sensors: accuracy-power trade-off by dynamic sensor selection. Wireless sensor networks, Springer, Berlin, Heidelberg
Zhang H, Zhou F, Zhang W, Yuan X, Chen Z (2014) Real-time action recognition based on a modified deep belief network model. IEEE International Conference on Information and Automation (ICIA)
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Ethical approval
This paper uses four standard datasets of human actions or activities. All procedures performed on four datasets which involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. This article dose not contain any studies with animals performed by any of the authors.
Informed consent
Informed consent was obtained from all individual participants included in the study during gathering two standard datasets of human actions by researchers.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendix
Appendix
HMDB51 confusion matrix: From column 1 to column 15.
0.60 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.00 | 0.62 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.05 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.04 |
0.00 | 0.00 | 0.76 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.68 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.09 | 0.00 | 0.00 | 0.00 |
0.04 | 0.00 | 0.00 | 0.00 | 0.62 | 0.00 | 0.00 | 0.05 | 0.00 | 0.00 | 0.11 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.89 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.65 | 0.00 | 0.00 | 0.06 | 0.08 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.79 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.08 | 0.00 | 0.00 | 0.55 | 0.00 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 0.94 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.58 | 0.06 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.04 | 0.71 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.46 | 0.11 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.05 | 0.00 | 0.00 | 0.00 | 0.00 | 0.88 | 0.00 |
0.00 | 0.10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.73 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.08 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.05 | 0.00 | 0.00 | 0.00 | 0.05 | 0.00 | 0.10 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.08 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.05 | 0.00 | 0.00 |
0.00 | 0.00 | 0.08 | 0.00 | 0.00 | 0.00 | 0.07 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.10 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.04 | 0.03 | 0.00 |
0.11 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.08 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.01 | 0.00 | 0.00 | 0.07 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.08 | 0.00 | 0.00 | 0.10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 |
0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.06 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.05 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.06 | 0.00 | 0.00 | 0.11 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.05 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.01 | 0.00 | 0.00 | 0.00 |
0.00 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.07 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.01 | 0.07 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.11 | 0.10 | 0.00 |
0.00 | 0.00 | 0.00 | 0.07 | 0.00 | 0.00 | 0.00 | 0.00 | 0.10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 0.00 | 0.09 | 0.09 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.06 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.11 | 0.10 | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.01 | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 0.10 | 0.00 | 0.11 | 0.07 | 0.00 | 0.00 | 0.00 |
HMDB51 confusion matrix: From column 16 to column 30.
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.05 | 0.11 | 0.10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.09 | 0.10 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.06 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.00 | 0.10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.08 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.04 | 0.08 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.09 | 0.00 | 0.00 | 0.00 | 0.09 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.10 | 0.00 | 0.00 | 0.00 | 0.08 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.06 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.11 | 0.00 | 0.00 | 0.07 | 0.00 | 0.00 | 0.10 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.09 | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.99 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.11 | 0.82 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.12 | 0.33 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.11 | 0.00 | 0.10 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.75 | 0.00 | 0.00 | 0.00 | 0.03 | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.72 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.05 | 0.39 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.08 | 0.00 | 0.00 | 0.06 | 0.00 | 0.51 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.64 | 0.00 | 0.06 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.80 | 0.00 | 0.06 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.03 | 0.00 | 0.05 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.17 | 0.11 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.11 | 0.00 | 0.80 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.99 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.07 | 0.00 | 0.00 | 0.00 | 0.03 | 0.04 | 0.00 | 0.01 | 0.00 | 0.00 | 0.69 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.87 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.11 | 0.00 | 0.00 | 0.00 | 0.00 | 0.89 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.07 | 0.08 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.06 | 0.10 | 0.00 | 0.00 | 0.11 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.09 | 0.00 | 0.01 | 0.00 | 0.00 | 0.08 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.04 | 0.05 | 0.00 | 0.00 | 0.11 | 0.00 | 0.00 | 0.00 | 0.10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.06 | 0.05 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | 0.06 | 0.00 | 0.06 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.08 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.11 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.09 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
HMDB51 confusion matrix: From column 31 to column 45.
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.04 | 0.09 | 0.00 | 0.00 | 0.00 | 0.00 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.11 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.09 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.11 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.06 | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 0.10 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 |
0.00 | 0.00 | 0.02 | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.09 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.10 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.05 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.05 | 0.00 | 0.00 | 0.00 | 0.02 |
0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 0.07 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.08 | 0.00 |
0.04 | 0.00 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.07 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.09 | 0.00 | 0.00 | 0.00 |
0.00 | 0.09 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.06 | 0.00 | 0.00 | 0.00 |
0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.11 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.06 | 0.00 | 0.00 | 0.04 | 0.09 | 0.00 | 0.00 | 0.09 | 0.00 | 0.00 | 0.00 | 0.00 | 0.09 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.08 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.11 | 0.00 | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 0.02 |
0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.09 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.99 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.91 | 0.05 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.48 | 0.00 | 0.00 | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.57 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.06 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.81 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.86 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.50 | 0.00 | 0.10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.81 | 0.00 | 0.00 | 0.00 | 0.00 | 0.12 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.96 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.58 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.05 | 0.00 | 0.00 | 0.00 | 0.82 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.59 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.77 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.64 | 0.00 |
0.00 | 0.00 | 0.02 | 0.11 | 0.00 | 0.10 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.43 |
0.00 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.00 | 0.09 | 0.03 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.09 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.04 | 0.00 | 0.02 | 0.03 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.11 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 |
0.00 | 0.00 | 0.09 | 0.00 | 0.00 | 0.00 | 0.00 | 0.11 | 0.00 | 0.00 | 0.00 | 0.00 | 0.05 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.11 | 0.00 | 0.00 | 0.04 | 0.09 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.08 |
HMDB51 confusion matrix: From column 46 to column 51.
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
---|---|---|---|---|---|
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.12 | 0.00 | 0.08 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.04 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.09 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.10 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 |
0.00 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 |
0.10 | 0.00 | 0.05 | 0.00 | 0.00 | 0.00 |
0.08 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.02 | 0.00 | 0.00 | 0.05 | 0.00 |
0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.09 | 0.00 | 0.12 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.11 | 0.00 | 0.00 | 0.00 |
0.09 | 0.05 | 0.00 | 0.00 | 0.00 | 0.00 |
0.04 | 0.00 | 0.03 | 0.00 | 0.00 | 0.11 |
0.00 | 0.00 | 0.00 | 0.00 | 0.05 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.06 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.09 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.00 | 0.00 | 0.10 | 0.00 | 0.00 | 0.00 |
0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.39 | 0.00 | 0.05 | 0.00 | 0.00 | 0.00 |
0.00 | 0.85 | 0.00 | 0.00 | 0.00 | 0.00 |
0.02 | 0.00 | 0.27 | 0.00 | 0.10 | 0.10 |
0.00 | 0.11 | 0.10 | 0.49 | 0.09 | 0.00 |
0.00 | 0.11 | 0.00 | 0.00 | 0.62 | 0.00 |
0.00 | 0.05 | 0.00 | 0.10 | 0.09 | 0.08 |
Rights and permissions
About this article
Cite this article
Nickfarjam, A.M., Ebrahimpour-Komleh, H. Multi-input 1-dimensional deep belief network: action and activity recognition as case study. Multimed Tools Appl 78, 17739–17761 (2019). https://doi.org/10.1007/s11042-018-7076-0
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11042-018-7076-0