Abstract
Prevention and treatment of diseases are critical to improve grape yield and quality. Automatic identification of grape diseases is important to prevent insect pests timely and effectively. This study proposed an automatic detection method for grape leaf diseases based on image analysis and back–propagation neural network (BPNN). The Wiener filtering method based on wavelet transform was applied to denoise the disease images. The grape leaf disease regions were segmented by Otsu method, and morphological algorithms were used to improve the lesion shape. Prewitt operator was utilized to extract the complete edge of lesion region. Five effective characteristic parameters, namely, perimeter, area, circularity, rectangularity, and shape complexity, were extracted. The proposed recognition model for grape leaf diseases based on BPNN could efficiently inspect and recognize five grape leaf diseases: leaf spot, Sphaceloma ampelinum de Bary, anthracnose, round spot, and downy mildew. Results indicated that the proposed detection system for grape leaf diseases could be used to inspect grape diseases with high classification accuracy.


Similar content being viewed by others
References
Abbasgholipour M, Omid M, Keyhani A, Mohtasebi SS (2011) Color image segmentation with genetic algorithm in a raisin sorting system based on machine vision in variable conditions. Expert Syst Appl 38(4):3671–3678
Cui D, Zhang O, Li M, Zhao Y, Hartman GL (2009) Detection of soybean rust using a multispectral image sensor. Sens & Instrumen Food Qual 3(1):49–56
Dhingra G, Kumar V, Joshi HD (2017) Study of digital image processing techniques for leaf disease detection and classification. Multimed Tools Appl 77(15):19951–20000
Ghael SP, Sayeed AM, Baraniuk RG (2006) Improved wavelet denoising via empirical Wiener filtering. Wavelet Applications in Signal and Image Processing V. International Society for Optics and Photonics:3169
Han D, Huang X, Fu H (2012) Measurement of plant leaf area based on image segmentation of color channel similarity. Trans Chin Soc Agric Eng 28(6):179–182
He D, Qiao Y, Li P, Gao Z, Li H, Tang J (2013) Weed recognition based on SVM-DS multi-feature fusion. Trans Chin Soc Agric Eng 44(2):182–187
Huang KY (2007) Application of artificial neural network for detecting Phalaenopsis seedling diseases using color and texture features. Comput Electron Agric 57(1):3–11
Jia W, Zhao D, Liu X, Tang S, Ruan C, Ji W (2015) Apple recognition based on K-means and GA-RBF-LMS neural network applicated in harvesting robot. Trans Chin Soc Agric Eng 31(18):175–183
Karimi Y, Prasher SO, Patel RM, Kim SH (2006) Application of support vector machine technology for weed and nitrogen stress detection in corn. Comput Electron Agric 51(1–2):99–109
Lu H, Li Y, Uemura T et al (2017) Low illumination underwater light field images reconstruction using deep convolutional neural networks. Futur Gener Comput Syst 82:142–148
Lu H, Li B, Zhu J, Li Y, Li Y, Xu X, He L, Li X, Li J, Serikawa S (2017) Wound intensity correction and segmentation with convolutional neural networks. Concurr Comput Pract Exper. https://doi.org/10.1002/cpe.3927
Lu H, Li Y, Chen M, Kim H, Serikawa S (2017) Brain intelligence: go beyond artificial intelligence. Mobile Netw Appl. https://doi.org/10.1007/s11036-017-0932-8
Lu H, Li Y, Mu S, Wang D, Kim H, Serikawa S (2017) Motor anomaly detection for unmanned aerial vehicles using reinforcement learning. IEEE Internet Things J 5(4):2315–2322
Mao L, Xue Y, Kong D, Liu G, Huang K, Lu Q, Wang K (2011) Litchi image segmentation algorithm based on sparse field level set. Trans Chin Soc Agric Eng 27(4):345–349
Martinelli F, Scalenghe R, Davino S, Panno S (2015) Advanced methods of plant disease detection. A review. Agron Sustain Dev 35(1):1–25
Murakami S, Homma K, Koike T (2005) Detection of small pests on vegetable leaves using GLCM. In: ASAE Annual International Meeting, Tampa, Florida, pp 1–9
Muthukannan K, Latha P (2018) A GA_FFNN algorithm applied for classification in diseased plant leaf system. Multimed Tools Appl 77(18):24387–24403
Paul B, Vincent M, Sabine M (2008) A cognitive vision approach to early pest detection in greenhouse crops. Comput Electron Agric 62(2):81–93
Paulus I, Busscher RD, Schrevens E (1997) Use of image analysis to investigate human quality classification of apples. J Agric Eng Res 68(4):341–353
Prasad S, Kumar PS, Ghosh D (2016) An efficient low vision plant leaf shape identification system for smart phones. Multimed Tools Appl 76(5):6915–6939
Pydipati R, Burks TF, Lee WS (2006) Identification of citrus disease using color texture features and discriminant analysis. Comput Electron Agric 52(1–2):49–59
Sanyal P, Patel SC (2008) Pattern recognition method to detect two diseases in rice plants. Imaging Sci J 56(6):319–325
Sasaki Y, Okamoto T, Imou K (1998) Automatic diagnosis of plant diseases. Jpn Soc Agric Machi 6l(2):119–126
Satti V, Satya A, Sharma S (2013) An automatic leaf recognition system for plant identification using machine vision technology. Int J Eng Sci Technol 5(2):874–879
Serikawa S, Lu H (2015) Underwater image dehazing using joint trilateral filter. Comput Electr Eng 40(1):41–50
Shariff A, Aik Y, Hong W, Mansor S, Mispan R (2006) Automated identification and counting of pests in the paddy fields using image analysis. Computers in Agriculture and Natural Resources, Orlando, Florida, pp 759–764
Shui P (2005) Image denoising algorithm via doubly local Wiener filtering with directional windows in wavelet domain. IEEE Signal Proc Let 12(10):681–684
Tian Y, Zhang C, Li C (2004) Application of support vector machine to shape recognition of plant disease spot. Trans Chin Soc Agric Eng 20(3):134–136
Wu A, Zhu J, Tao Z, Mao C (2016) Automatic inspection and classification for thin-film transistor liquid crystal display surface defects based on particle swarm optimization and one-class support vector machine. Adv Mech Eng 8(11):1–11
Yan Q, Liang D, Zhang D (2013) Recognition of weed in corn field based on supervised locally linear embedding algorithm. Trans Chin Soc Agric Eng 29(14):171–177
Yang F, Wang Z, Yang Q, Zhang Y (2007) Application of wavelet transform-based Wiener filtering method to denoisen agricultural product images. Trans Chin Soc Agric Eng 23(2):145–150
Zheng L, Zhang J, Wang Q (2009) Mean-shift-based color segmentation of images containing green vegetation. Comput Electron Agric 65(1):93–98
Zhu J, Wu A, Li P (2012) Corn leaf diseases diagnostic techniques based on image recognition. Commun Comput Info Sci 288:334–341
Zhu J, Wu A, Liu X (2018) Printed circuit board defect visual detection based on wavelet denoising. IOP Conference Series: Materials Science and Engineering 392:062055
Acknowledgements
This research is supported by National Natural Science Foundation of China (No. U1304305); Scientific Research Tackling Key Subject of Henan Province (No. 142102310550, No. 162102110122, No. 172102210300, No. 182102110116); Natural Science Foundation of Henan Province (No. 142300410419); Key Project of Science and Technology Research of Henan Province Education Department (No. 14B416006, No. 15A416001, No. 16A510028).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Zhu, J., Wu, A., Wang, X. et al. Identification of grape diseases using image analysis and BP neural networks. Multimed Tools Appl 79, 14539–14551 (2020). https://doi.org/10.1007/s11042-018-7092-0
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11042-018-7092-0