Skip to main content
Log in

Object tracking with collaborative extreme learning machines

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

We propose a novel collaborative discriminative model based on extreme learning machine (ELM) for object tracking in this paper. In order to represent the object more precisely, we first propose a new collaborative discriminative representation model, which includes both a global discriminative sub-model and a local discriminative sub-model. Different from traditional local representation models, in particular, our local sub-model integrates several classifiers which have structural relations to improve the expression. The global discriminative model represents the appearance comprehensively while the local discriminative sub-model can effectively address occlusions and assist the update. Second, to have better combination of these sub-models, we propose a novel collaboration strategy based on the Kullback-Leibler (KL) distance. The novel strategy can determine the weights of the sub-models adaptively by measuring their KL distances reciprocally. Third, we introduce ELM into tracking and adopt it to build both the global and the local discriminative sub-models simultaneously. Since ELM has a good generalization performance and is robust to the imbalance of the training samples, it is suitable to be used for tracking. Experimental results demonstrate that our method can achieve comparable performance to many state-of-the-art tracking approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Adam A, Rivlin E, Shimshoni I (2006) In: Proceedings of the IEEE conference computer vision and pattern recognition (CVPR), vol 1, pp 798–805

  2. Avidan S (2004) IEEE Trans Pattern Anal Mach Intell 26(8):1064

    Article  Google Scholar 

  3. Avidan S (2007) IEEE Trans Pattern Anal Mach Intell 29 (2):261. https://doi.org/10.1109/TPAMI.2007.35

    Article  Google Scholar 

  4. Babenko B, Yang MH, Belongie S (2011) IEEE Trans Pattern Anal Mach Intell 33(8):1619. https://doi.org/10.1109/TPAMI.2010.226

    Article  Google Scholar 

  5. Bai Q, Wu Z, Sclaroff S, Betke M, Monnier C To appear in ICCV2013

  6. Baojie Fan YT, Cong Y (2017) J Electron Imaging 26:26. https://doi.org/10.1117/1.JEI.26.1.013007

    Article  Google Scholar 

  7. Chang X, Ma Z, Lin M, Yang Y, Hauptmann AG (2017) IEEE Trans Image Process 26(8):3911

    Article  MathSciNet  Google Scholar 

  8. Chang X, Yu YL, Yang Y, Xing EP (2017) IEEE Trans Pattern Anal Mach Intell 39(8):1617

    Article  Google Scholar 

  9. Chen D, Yuan Z, Wu Y, Zhang G, Zheng N To appear in ICCV2013

  10. Danelljan M, Bhat G, Khan FS, Felsberg M (2017). In: 2017 IEEE conference on computer vision and pattern recognition (CVPR), pp 6931–6939

  11. Dinh TB, Vo N, Medioni G (2011) In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 1177–1184, DOI https://doi.org/10.1109/CVPR.2011.5995733, (to appear in print)

  12. Grabner H, Grabner M, Bischof H (2006) In: Proceedings of the British machine vision conference, vol 1, pp 47–56

  13. Hare S, Saffari A, Torr PHS (2011) In: Proceedings of the IEEE international conference on computer vision (ICCV), pp 263–270

  14. Henriques JF, Caseiro R, Martins P, Batista J (2015) IEEE Trans Pattern Anal Mach Intell 37(3):583

    Article  Google Scholar 

  15. Huang GB, Zhu QY, Siew CK (2006) Neurocomputing 70(1):489

    Article  Google Scholar 

  16. Huang GB, Zhou H, Ding X, Zhang R (2012) IEEE Trans Syst Man Cybern B Cybern 42(2):513

    Article  Google Scholar 

  17. Jia X, Lu H, Yang MH (2012) In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 1822–1829

  18. Kalal Z, Mikolajczyk K, Matas J (2012) IEEE Trans Pattern Anal Mach Intell 34(7):1409

    Article  Google Scholar 

  19. Kwon J, Lee KM (2010) In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 1269–1276, DOI https://doi.org/10.1109/CVPR.2010.5539821, (to appear in print)

  20. Kwon J, Lee KM (2011) In: Proceedings of the IEEE international conference on computer vision (ICCV), pp 1195–1202

  21. Li H, Shen C, Shi Q (2011) In: Proceedings of the IEEE conference computer vision and pattern recognition (CVPR). https://doi.org/10.1109/CVPR.2011.5995483, pp 1305–1312

  22. Li X, Dick A, Shen C, van den Hengel A, Wang H IEEE Transactions on Pattern Analysis & Machine Intelligence (to be published). Early Access

  23. Liu R, Cheng J, Lu H (2009) In: 2009 IEEE 12th international conference on computer vision, IEEE, pp 1459–1466

  24. Liu B, Huang J, Kulikowski C, Yang L (2013) IEEE Trans Pattern Anal Mach Intell 35(12):2968

    Article  Google Scholar 

  25. Lu H, Zhou Q, Wang D, Xiang R (2011) In: 2011 IEEE international conference on automatic face & gesture recognition and workshops (FG 2011), IEEE, pp 539–544

  26. Luka C, Matej K, Ales L Technical report 10-2013

  27. Mei X, Ling H (2009) In: Proceedings of the IEEE international conference on computer vision (ICCV), pp 1436 –1443. https://doi.org/10.1109/ICCV.2009.5459292

  28. Mei X, Ling H (2011) IEEE Trans Pattern Anal Mach Intell 33(11):2259. https://doi.org/10.1109/TPAMI.2011.66

    Article  Google Scholar 

  29. Mueller M, Smith N, Ghanem B (2017) In: Proceedings of the IEEE conference on computer vision pattern recognition (CVPR), pp 1396–1404

  30. Nam H, Han B (2016) In: The IEEE conference on computer vision and pattern recognition (CVPR), pp 4293–4302

  31. Peng X, Schmid C (2016) In: European conference on computer vision (Springer), pp 744–759

  32. Ross D, Lim J, Lin R, Yang M (2008) Int J Comput Vis 77(1):125

    Article  Google Scholar 

  33. Saffari A, Leistner C, Santner J, Godec M, Bischof H (2009) In: 2009 IEEE 12th international conference on computer vision workshops (ICCV workshops), IEEE, pp 1393–1400

  34. Santner J, Leistner C, Saffari A, Pock T, Bischof H (2010) In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR). https://doi.org/10.1109/CVPR.2010.5540145 https://doi.org/10.1109/CVPR.2010.5540145, pp 723–730

  35. Sun L, Liu G (2011) IEEE Trans Circuits Syst Video Technol 21(4):408. https://doi.org/10.1109/TCSVT.2010.2087815

    Article  Google Scholar 

  36. Tang F, Brennan S, Zhao Q, Tao H (2007) In: Proceedings of the IEEE international conference on computer vision (ICCV), pp 1–8. https://doi.org/10.1109/ICCV.2007.4408954

  37. Wang Y, Luo X, Ding L, Hu S (2018) Multimed Tools Appl 77(23):31447. https://doi.org/10.1007/s11042-018-6198-8

    Article  Google Scholar 

  38. Wu Y, Lim J, Yang M (2013) In: IEEE conference on computer vision and pattern recognition (CVPR), IEEE, pp 2411–2418

  39. Yang H, Shao L, Zheng F, Wang L, Song Z (2011) Neurocomputing 74(18):3823

    Article  Google Scholar 

  40. Yang J, Zhang S, Zhang L (2016) J Electron Imaging 25(5):053006

    Article  Google Scholar 

  41. Yang H, Zhong D, Liu C, Song K, Yin Z (2018) J Electron Imaging 27:27. https://doi.org/10.1117/1.JEI.27.2.023008

    Article  Google Scholar 

  42. Yao R, Shi Q, Shen C, Zhang Y, van den Hengel A (2013) In: IEEE conference on computer vision and pattern recognition (CVPR)

  43. Yilmaz A, Javed O, Shah M (2006) Acm Computing Surveys (CSUR) 38 (4):13

    Article  Google Scholar 

  44. Yu Q, Dinh T, Medioni G (2008) Comput Vis–ECCV 2008:678–691

    Google Scholar 

  45. Yun S, Choi J, Yoo Y, Yun K, Choi JY (2017) In: 2017 IEEE conference on computer vision and pattern recognition (CVPR), pp 1349–1358

  46. Zhang L, van der Maaten L (2013) In: 2013 IEEE conference on computer vision and pattern recognition (CVPR), IEEE, pp 1838–1845

  47. Zhang T, Ghanem B, Liu S, Ahuja N (2012) In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 2042–2049

  48. Zhang G, Liu J, Li H, Chen YQ, Davis LS (2017) IEEE Signal Process Lett 24(11):1666

    Article  Google Scholar 

  49. Zhang S, Lu W, Xing W, Zhang L (2018) IEEE transactions on cybernetics. Early acccess 1:14. https://doi.org/10.1109/TCYB.2018.2868782

    Article  Google Scholar 

  50. Zhang S, Lu W, Xing W, Zhang L (2018) Pattern Recogn 84:112

    Article  Google Scholar 

  51. Zhang S, Sui Y, Yu X, Zhao S, Zhang L (2015) Pattern Recogn 48 (8):2474

    Article  Google Scholar 

  52. Zhang S, Zhao S, Sui Y, Zhang L (2015) IEEE Trans Image Process 24(12):5723

    Article  MathSciNet  Google Scholar 

  53. Zhao J, Zhang W, Cao F (2018) Multimed Tools Appl 77(23):30969. https://doi.org/10.1007/s11042-018-6132-0

    Article  Google Scholar 

  54. Zhong W, Lu H, Yang MH (2012) In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 1838–1845

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haipeng Kuang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuang, H., Xun, L. Object tracking with collaborative extreme learning machines. Multimed Tools Appl 79, 4965–4988 (2020). https://doi.org/10.1007/s11042-018-7135-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-018-7135-6

Keywords

Navigation