Skip to main content
Log in

A novel natural image noise level estimation based on flat patches and local statistics

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

This paper proposes a high-precision algorithm for noise level estimation. Different from existing algorithms, we present a new noise level estimation algorithm by linearly combining the overestimated and underestimated results using combinatorial coefficients that can be tailored to the problem at hand. The algorithm has two distinct features: it avoids the underestimation of noise level estimation algorithms that employ the minimum eigenvalue and demonstrates higher accuracy and robustness for a large range of visual content and noise conditions. The experimental results that are obtained in this study demonstrate that the proposed algorithm is effective for various scenes with various noise levels. The software release of the proposed algorithm is available online at https://ww2.mathworks.cn/matlabcentral/fileexchange/64519-natural-image-noise-level-estimation-based-on-flat-patches-and-local-statistics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. http://physics.medma.uni-heidelberg.de/cms/projects/132-pcanle

  2. http://www.ok.sc.e.titech.ac.jp/res/NLE/AWGNestimation.html

  3. http://people.csail.mit.edu/danielzoran/

  4. http://appsrv.cse.cuhk.edu.hk/gychen/

References

  1. Abdallah MB, Azar AT, Guedri H, Malek J, Belmabrouk H (2018) Noise-estimation-based anisotropic diffusion approach for retinal blood vessel segmentation. Neural Comput Appl 29(8):159–180

    Article  Google Scholar 

  2. Aharon M, Elad M, Bruckstein A (2006) K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans Signal Process 54 (11):4311–4322

    Article  MATH  Google Scholar 

  3. Arbeláez P, Maire M, Fowlkes C, Malik J (2011) Contour detection and hierarchical image segmentation. IEEE Trans Pattern Anal Mach Intell 33(5):898–916

    Article  Google Scholar 

  4. Callet PL, Autrusseau F (2005) Subjective quality assessment irccyn/ivc database. http://www.irccyn.ec-nantes.fr/ivcdb/

  5. Chen G, Zhu F, Heng PA (2015) An efficient statistical method for image noise level estimation. In: 2015 I.E. international conference on computer vision (ICCV), pp 477–485

  6. Colom M, Lebrun M, Buades A, Morel JM (2015) A non-parametric approach for the estimation of intensity-frequency dependent noise. In: 2015 IEEE international conference on image processing, pp 4261–4265

  7. Dabov K, Foi A, Katkovnik V, Egiazarian K (2007) Image denoising by sparse 3D transform-domain collaborative filtering. IEEE Trans Image Process 18 (8):2080–2095

    Article  Google Scholar 

  8. Dong W, Zhang L, Shi G, Wu X (2011) Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization. IEEE Trans Image Process 20(7):1838–1857

    Article  MathSciNet  MATH  Google Scholar 

  9. Dong W, Zhang L, Shi G, Li X (2013) Nonlocally centralized sparse representation for image restoration. IEEE Trans Image Process 22(4):1620–1630

    Article  MathSciNet  MATH  Google Scholar 

  10. Donoho DL (1995) De-noising by soft-thresholding. IEEE Trans Inf Theory 41 (3):613–627

    Article  MathSciNet  MATH  Google Scholar 

  11. Donoho DL, Johnstone IM (1995) Adapting to unknown smoothness via wavelet shrinkage. Publ Am Stat Assoc 90(432):1200–1224

    Article  MathSciNet  MATH  Google Scholar 

  12. Ghazi MM, Erdogan H (2016) Image noise level estimation based on higher-order statistics. Multimed Tools Appl 76(2):1–19

    Google Scholar 

  13. Hashemi M, Beheshti S (2010) Adaptive Noise Variance Estimation in BayesShrink. IEEE Signal Process Lett 17(1):12–15

    Article  Google Scholar 

  14. Huang X, Chen L, Tian J, Zhang X, Fu X (2014) Blind noisy image quality assessment using block homogeneity. Comput Electr Eng 40(3):796–807

    Article  Google Scholar 

  15. Jiang P, Zhang JZ (2016) Fast and reliable noise level estimation based on local statistic. Pattern Recogn Lett 78(C):8–13

    Article  MathSciNet  Google Scholar 

  16. Khmag A, Ramli AR, Al-Haddad SAR, Kamarudin N (2018) Natural image noise level estimation based on local statistics for blind noise reduction. Vis Comput 34(4):575–587

    Article  Google Scholar 

  17. Kim DG, Shamsi ZH (2018) Enhanced residual noise estimation of low rank approximation for image denoising. Neurocomputing 293:1–11

    Article  Google Scholar 

  18. Li D, Zhou J, Tang YY (2017) Noise Level Estimation for Natural Images Based on Scale-Invariant Kurtosis and Piecewise Stationarity. IEEE Trans Image Process 26 (2):1017–1030

    Article  MathSciNet  MATH  Google Scholar 

  19. Liu X, Tanaka M, Okutomi M (2013) Single-image noise level estimation for blind denoising. IEEE Trans Image Process 2(12):5226–5237

    Article  Google Scholar 

  20. Mandal S, Bhavsar A, Sao AK (2016) Noise adaptive super-resolution from single image via non-local mean and sparse representation. Signal Process 132:134–149

    Article  Google Scholar 

  21. Olsen SI (1993) Estimation of noise in images: an evaluation. Cvgip Graph Model Image Process 55(4):319–323

    Article  Google Scholar 

  22. Oyet AJ, Sutradhar B (2003) Testing variances in wavelet regression models. Stat Probab Lett 61(1):97–109

    Article  MathSciNet  MATH  Google Scholar 

  23. Ponomarenko P, Lukin V, Zelensky A, Egiazarian K, Carli M, Battisti F (2009) Tid2008-a database for evaluation of full-reference visual quality assessment metrics. Adv Modern Radioelectron 10(4):30–45

    Google Scholar 

  24. Pyatykh S, Hesser J, Zheng L (2013) Image noise level estimation by principal component analysis. IEEE Trans Image Process 22(2):687–699

    Article  MathSciNet  MATH  Google Scholar 

  25. Royston JP (1982) Algorithm as 177: Expected normal order statistics (exact and approximate). J R Stat Soc 31(2):161–165

    Google Scholar 

  26. Shapiro SS, Wilk MB (1972) An analysis of variance test for the exponential distribution (complete samples). Technometrics 14(2):355–370

    Article  MATH  Google Scholar 

  27. Sheikh HR, Sabir MF, Bovik AC (2005) Live image quality assessment database release2. http://live.ece.utexas.edu/research/quality. Accessed 3 May 2017

  28. Shi B, Pang ZF, Wu J (2015) Alternating split Bregman method for the bilaterally constrained image deblurring problem. Appl Math Comput 250:402–414

    MathSciNet  MATH  Google Scholar 

  29. Shin DH, Park RH, Yang S, Jung JH (2005) Block-based noise estimation using adaptive Gaussian filtering. IEEE Trans Consum Electron 51(1):218–226

    Article  Google Scholar 

  30. Witwit W, Zhao Y, Jenkins K, Addepalli S (2018) Global motion based video super-resolution reconstruction using discrete wavelet transform. Multimedia Tools Appl 77(20):27641–27660

    Article  Google Scholar 

  31. Xie X, Wang C, Zhang A, Meng X (2014) A robust level set method based on local statistical information for noisy image segmentation. Optik 125(9):2199–2204

    Article  Google Scholar 

  32. Xu S, Yang X, Jiang S (2017) A fast nonlocally centralized sparse representation algorithm for image denoising. Signal Process 131:99–112

    Article  Google Scholar 

  33. Zhu X, Milanfar P (2010) Automatic parameter selection for denoising algorithms using a no-reference measure of image content. IEEE Trans Image Process 19(12):3116–3132

    Article  MathSciNet  MATH  Google Scholar 

  34. Zoran D, Weiss Y (2009) Scale invariance and noise in natural images. In: 2009 I.E. international conference on computer vision (ICCV), pp 2209–2216

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (Grant no. 11671307, 61561019, 61763009 and 11761030), the Nature Science Foundation of Hubei Province (Grant no. 2015CFB262), and the Doctoral Scientific Fund Project of Hubei University for Nationalities (Grant no. MY2015B001). We would like to express our gratitude to the anonymous reviewers and editors for their valuable comments and suggestions, which led to the improvement of the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuming Yi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, Z., Yi, X. A novel natural image noise level estimation based on flat patches and local statistics. Multimed Tools Appl 78, 17337–17358 (2019). https://doi.org/10.1007/s11042-018-7137-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-018-7137-4

Keywords

Navigation