Abstract
We present an approach for the visualization and interactive analysis of dynamic graphs that contain a large number of time steps. A specific focus is put on the support of analyzing temporal aspects in the data. Central to our approach is a static, volumetric representation of the dynamic graph based on the concept of space-time cubes that we create by stacking the adjacency matrices of all time steps. The use of GPU-accelerated volume rendering techniques allows us to render this representation interactively. We identified four classes of analytics methods as being important for the analysis of large and complex graph data, which we discuss in detail: data views, aggregation and filtering, comparison, and evolution provenance. Implementations of the respective methods are presented in an integrated application, enabling interactive exploration and analysis of large graphs. We demonstrate the applicability, usefulness, and scalability of our approach by presenting two examples for analyzing dynamic graphs. Furthermore, we let visualization experts evaluate our analytics approach.
















Similar content being viewed by others
References
Abdelaal M, Hlawatsch M, Burch M, Weiskopf D, Dachsbacher F (2018) clustering for stacked edge splatting. In: Beck F, Sadlo C (eds) Vision, Modeling and Visualization. The Eurographics Association
Amanatides J, Woo A, et al. (1987) A fast voxel traversal algorithm for ray tracing. In: Eurographics, no 3 in 87, pp 3–10
Archambault D, Purchase HC, Pinaud B (2011) Animation, small multiples, and the effect of mental map preservation in dynamic graphs. IEEE Trans Vis Comput Graph 17(4):539–552
Bach B, Dragicevic P, Archambault D, Hurter C, Carpendale S (2017) A descriptive framework for temporal data visualizations based on generalized space-time cubes. In: Computer Graphics Forum, vol 36. Wiley Online Library, pp 36–61
Bach B, Pietriga E, Fekete JD (2014) Visualizing dynamic networks with matrix cubes. In: CHI Conference on Human Factors in Computing Systems, pp 877–886
Bach B, Riche NH, Dwyer T, Madhyastha TM, Fekete J, Grabowski TJ (2015) Small multipiles: piling time to explore temporal patterns in dynamic networks. Comput Graphics Forum 34(3):31–40
Balabanian JP, Viola I, Möller T., Gröller E. (2008) Temporal styles for time-varying volume data. In: Gumhold S, Kosecka J, Staadt O (eds) Proceedings of 3DPVT’08 - the Fourth International Symposium on 3D Data Processing, Visualization and Transmission, pp 81–89
Beck F, Burch M, Diehl S, Weiskopf D (2017) A taxonomy and survey of dynamic graph visualization. Comput Graphics Forum 36(1):133–159
Beck F, Burch M, Vehlow C, Diehl S, Weiskopf D (2012) Rapid serial visual presentation in dynamic graph visualization. In: 2012 IEEE Symposium on Visual Languages and Human-centric Computing (VL/HCC), pp 185–192
Behrisch M, Bach B, Riche NH, Schreck T, Fekete J (2016) Matrix reordering methods for table and network visualization. Comput Graphics Forum 35 (3):693–716
Ben Lahmar H, Herschel M (2017) Provenance-based recommendations for visual data exploration. In: Workshop on Theory and Practice of Provenance (taPP)
Ben Lahmar H, Herschel M, Blumenschein M, Keim DA (2018) Provenance-based visual data exploration with evlin. In: Conference on Extending Database Technology (EDBT), pp 686–689
Bruder V, Hlawatsch M, Frey S, Burch M, Weiskopf D, Ertl T (2018) Volume-based large dynamic graph analytics. In: Proceedings of the 22nd International Conference on Information Visualization, IV, pp 210–219
Burch M, Hlawatsch M, Weiskopf D (2017) Visualizing a sequence of a thousand graphs (or even more). Comput Graphics Forum 36(3):261–271
Burch M, Schmidt B, Weiskopf D (2013) A matrix-based visualization for exploring dynamic compound digraphs. In: Proceedings of the 17th International Conference on Information Visualisation, IV, pp 66–73
Burch M, Vehlow C, Beck F, Diehl S, Weiskopf D (2011) Parallel edge splatting for scalable dynamic graph visualization. IEEE Trans Vis Comput Graph 17 (12):2344–2353
Callahan SP, Freire J, Santos E, Scheidegger CE, Vo T, Silva HT (2006) Vistrails: visualization meets data management. In: SIGMOD
Cuthill E, McKee J (1969) Reducing the bandwidth of sparse symmetric matrices. In: Proceedings of the 1969 24th National Conference, ACM, pp 157–172
Ellkvist T, Koop D, Anderson EW, Freire J, Silva CT (2008) Using provenance to support real-time collaborative design of workflows. pp 266–279
Frey S, Sadlo F, Ertl T (2012) Visualization of temporal similarity in field data. IEEE Vis Comput Gr 18:2023–2032
Ghoniem M, Fekete J, Castagliola P (2005) On the readability of graphs using node-link and matrix-based representations: a controlled experiment and statistical analysis. Inf Vis 4(2):114–135
Gratzl S, Lex A, Gehlenborg N, Cosgrove N, Streit M (2016) From visual exploration to storytelling and back again. Comput Graphics Forum (EuroVis ’16) 35 (3):491–500
Hadwiger M, Ljung P, Salama CR, Ropinski T (2008) Advanced illumination techniques for gpu volume raycasting. In: ACM SIGGRAPH ASIA 2008 Courses, SIGGRAPH asia ’08. ACM, New York, pp 1:1–1:166
Herschel M, Diestelkämper R, Ben Lahmar H (2017) A survey on provenance: What for? what form? what from? VLDB J 26(6):881–906
Hlawatsch M, Burch M, Weiskopf D (2014) Visual adjacency lists for dynamic graphs. IEEE Trans Vis Comput Graph 20(11):1590–1603
Kaufman L, Rousseeuw PJ (2009) Finding groups in data: an introduction to cluster analysis, vol 344. Wiley, Hoboken
King IP (1970) An automatic reordering scheme for simultaneous equations derived from network systems. Int J Numer Methods Eng 2(4):523–533
Milo T, Somech A (2016) React: Context-sensitive recommendations for data analysis. In: ACM SIG Conference on the Management of Data (SIGMOD), pp 2137–2140
Misue K, Eades P, Lai W, Sugiyama K (1995) Layout adjustment and the mental map. J Vis Lang Comput 6(2):183–210
Perer A, Sun J (2012) Matrixflow: temporal network visual analytics to track symptom evolution during disease progression. In: AMIA Annual Symposium Proceedings, vol 2012. American Medical Informatics Association, p 716
Schneider T, Tymchuk Y, Salgado R, Bergel A (2016) Cuboidmatrix: exploring dynamic structural connections in software components using space-time cube. In: 2016 IEEE Working Conference on Software Visualization (VISSOFT), IEEE, pp 116–125
Siek JG, Lee LQ, Lumsdaine A (2001) The boost graph library: user guide and reference manual. Portable documents pearson education
Sloan S (1986) An algorithm for profile and wavefront reduction of sparse matrices. Int J Numer Methods Eng 23(2):239–251
Stegmaier S, Strengert M, Klein T, Ertl T (2005) A simple and flexible volume rendering framework for graphics-hardware-based raycasting. In: Proceedings of the Fourth Eurographics / IEEE VGTC Conference on Volume Graphics, VG’05. Eurographics Association, Aire-la-Ville, pp 187–195
Tversky B, Morrison JB, Betrancourt M (2002) Animation: can it facilitate? Int J Hum Comput Stud 57(4):247–262
van den Elzen S, Holten D, Blaas J, van Wijk JJ (2014) Dynamic network visualization withextended massive sequence views. IEEE Trans Vis Comput Graph 20 (8):1087–1099
van den Elzen S, Holten D, Blaas J, van Wijk JJ (2016) Reducing snapshots to points: a visual analytics approach to dynamic network exploration. IEEE Trans Vis Comput Graph 22(1):1–10
von Landesberger T, Kuijper A, Schreck T, Kohlhammer J, van Wijk JJ, Fekete J, Fellner DW (2011) Visual analysis of large graphs: state-of-the-art and future research challenges. Comput Graphics Forum 30(6):1719–1749
Woodring J, Shen HW (2003) Chronovolumes: a direct rendering technique for visualizing time-varying data. In: Proceedings of the 2003 Eurographics/IEEE TVCG Workshop on Volume Graphics, VG ’03. ACM, New York, pp 27–34
Woodring J, Shen HW (2006) Multi-variate, time varying, and comparative visualization with contextual cues. IEEE Trans Vis Comput Graph 12(5):909–916
Yi JS, Elmqvist N, Lee S (2010) Timematrix: Analyzing temporal social networks using interactive matrix-based visualizations. Int J Hum Comput Interact 26 (11&12):1031–1051
Acknowledgements
We would like to thank the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) for support within Projects A02, B01, and D03 of SFB/Transregio 161 (project number 251654672).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Bruder, V., Ben Lahmar, H., Hlawatsch, M. et al. Volume-based large dynamic graph analysis supported by evolution provenance. Multimed Tools Appl 78, 32939–32965 (2019). https://doi.org/10.1007/s11042-019-07878-6
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11042-019-07878-6