Skip to main content
Log in

PAD: a perceptual application-dependent metric for quality assessment of segmentation algorithms

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Extracting elements of interest from video frames is a necessary task in many applications, such as those that require replacing the original background. Quality assessment of foreground extraction algorithms is essential to find the best algorithm for a particular application. This paper presents an application-dependent objective metric capable of evaluating the quality of those algorithms by considering user perception. Our metric identifies types of errors that cause the greatest annoyance based on regions of the scene where users tend to keep their attention during videoconference sessions. We demonstrate the efficiency of our metric by evaluating bilayer segmentation algorithms. The results showed that metric is effective compared to others used to evaluate algorithms for videoconferencing systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Baf F, Bouwmans T, Vachon B (2008) Type-2 fuzzy mixture of gaussians model: Application to background modeling. In: Proceedings of the 4th international symposium on advances in visual computing. Springer, Berlin, pp 772–781, https://doi.org/10.1007/978-3-540-89639-5_74

  2. Bailenson JN, Blascovich J, Beall AC, Loomis JM (2001) Equilibrium theory revisited: Mutual gaze and personal space in virtual environments. Presence Teleop Virt 10(6):583–598. https://doi.org/10.1162/105474601753272844

    Article  Google Scholar 

  3. Baron R, Jones A, Massimi M, McConnell K (2016) Background replacement for videoconferencing. https://www.google.com/patents/US9503685. Accessed 9 Dec 2016

  4. Bohannon LS, Herbert AM, Pelz JB, Rantanen EM (2013) Eye contact and video-mediated communication: a review. Displays 34(2):177–185. https://doi.org/10.1016/j.displa.2012.10.009

    Article  Google Scholar 

  5. Correia P, Pereira F (2003) Objective evaluation of video segmentation quality. IEEE Trans Image Process 12(2):186–200. https://doi.org/10.1109/TIP.2002.807355

    Article  Google Scholar 

  6. Criminisi A, Cross G, Blake A, Kolmogorov V (2006) Bilayer segmentation of live video. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition - CVPR ’06, vol 1. IEEE Computer Society, Washington, pp 53–60, https://doi.org/10.1109/CVPR.2006.69

  7. Erdem CE, Sankur B (2000) Performance evaluation metrics for object-based video segmentation. In: 2000 10th European signal processing conference, pp 1–4

  8. European Broadcasting Union (2019) EBU – European broadcasting union. http://www.ebu.ch. Accessed 22 February 2019

  9. Gelasca E, Ebrahimi T (2009) On evaluating video object segmentation quality: a perceptually driven objective metric. IEEE J Sel Top Sign Proces 3(2):319–335. https://doi.org/10.1109/JSTSP.2009.2015067

    Article  Google Scholar 

  10. Godbehere A, Matsukawa A, Goldberg K (2012) Visual tracking of human visitors under variable-lighting conditions for a responsive audio art installation. In: American control conference (ACC), pp 4305–4312. https://doi.org/10.1109/ACC.2012.6315174

  11. Gonçalves V M, Delamaro ME, Nunes FLS (2017) Applying graphical oracles to evaluate image segmentation results. J Braz Comput Soc 23(1):1. https://doi.org/10.1186/s13173-016-0050-7

    Article  Google Scholar 

  12. Goyette N, Jodoin PM, Porikli F, Konrad J, Ishwar P (2012) Changedetection.net: a new change detection benchmark dataset. In: 2012 IEEE computer society conference on computer vision and pattern recognition workshops, pp 1–8. https://doi.org/10.1109/CVPRW.2012.6238919

  13. Heikkila M, Pietikainen M (2006) A texture-based method for modeling the background and detecting moving objects. IEEE Trans Pattern Anal Mach Intell 28 (4):657–662. https://doi.org/10.1109/TPAMI.2006.68

    Article  Google Scholar 

  14. Huang G, Pun CM (2018) On-line video multi-object segmentation based on skeleton model and occlusion detection. Multimed Tools Appl 77(23):31313–31329. https://doi.org/10.1007/s11042-018-6208-x

    Article  Google Scholar 

  15. Huang X, Søgaard J, Forchhammer S (2017) No-reference pixel based video quality assessment for hevc decoded video. J Vis Commun Image Represent 43(C):173–184. https://doi.org/10.1016/j.jvcir.2017.01.002

    Article  Google Scholar 

  16. Isik S (2019) SWCD : a sliding window and self-regulated learning based background updating method for change detection in videos. https://github.com/isahhin/swcd. Accessed 3 March 2019

  17. Isik S, Özkan K, Günal S, Gerek ON (2018) SWCD: a sliding window and self-regulated learning-based background updating method for change detection in videos. J Electron Imaging 27(2):1–11. https://doi.org/10.1117/1.JEI.27.2.023002

    Article  Google Scholar 

  18. ITU-R (2009) Methodology for the subjective assessment of the quality of television pictures. https://www.itu.int/rec/r-rec-bt.500. Accessed 1 March 2019

  19. ITU-R (2019) International telecommunications union – committed to connecting the world. http://www.itu.int. Accessed 21 February 2019

  20. Kim W (2018) Background subtraction with variable illumination in outdoor scenes. Multimed Tools Appl 77(15):19439–19454. https://doi.org/10.1007/s11042-017-5410-6

    Article  Google Scholar 

  21. Kozamernik F, Steinmann V, Sunna P, Wyckens E (2005) Samviq – a new ebu methodology for video quality evaluations in multimedia. SMPTE Motion Imaging Journal 114(4):152–160. https://doi.org/10.5594/J11535

    Article  Google Scholar 

  22. Lacassagne L, Manzanera A, Dupret A (2009) Motion detection: Fast and robust algorithms for embedded systems. In: 16Th IEEE international conference on image processing (ICIP) 2009, pp 3265–3268, https://doi.org/10.1109/ICIP.2009.5413946

  23. Lee S, Yun ID, Lee SU (2010) Robust bilayer video segmentation by adaptive propagation of global shape and local appearance. J Vis Commun Image Represent 21 (7):665–676. https://doi.org/10.1016/j.jvcir.2010.04.005

    Article  Google Scholar 

  24. Li Q, Fang YM, Xu JT (2016) A novel spatial pooling strategy for image quality assessment. J Comput Sci Technol 31(2):225–234. https://doi.org/10.1007/s11390-016-1623-9

    Article  Google Scholar 

  25. Lin W, Kuo CCJ (2011) Perceptual visual quality metrics: a survey. J Vis Commun Image Represent 22(4):297–312. https://doi.org/10.1016/j.jvcir.2011.01.005

    Article  Google Scholar 

  26. McFarlane NJB, Schofield CP (1995) Segmentation and tracking of piglets in images. Mach Vis Appl 8(3):187–193. https://doi.org/10.1007/BF01215814

    Article  Google Scholar 

  27. Mech R, Marqués F (2002) Objective evaluation criteria for 2d-shape estimation results of moving objects. EURASIP Journal on Advances in Signal Processing 2002(4):273674. https://doi.org/10.1155/S1110865702000732

    Article  MATH  Google Scholar 

  28. Ou XY, Li P, Ling HF, Liu S, Wang TJ, Li D (2017) Objectness region enhancement networks for scene parsing. J Comput Sci Technol 32(4):683–700. https://doi.org/10.1007/s11390-017-1751-x

    Article  Google Scholar 

  29. Péchard S, Pépion R, Callet PL (2008) Suitable methodology in subjective video quality assessment: a resolution dependent paradigm. In: Proceedings of the international workshop on image media quality and its applications – IMQA2008, pp 1–6

  30. Qian R, Sezan M (1999) Video background replacement without a blue screen. In: Proceedings of the international conference on image processing - ICIP 99. IEEE computer society, Washington, DC, USA, vol 4, pp 143–146, https://doi.org/10.1109/ICIP.1999.819566

  31. Rosin PL, Ioannidis E (2003) Evaluation of global image thresholding for change detection. Pattern Recogn Lett 24(14):2345–2356. https://doi.org/10.1016/S0167-8655(03)00060-6

    Article  MATH  Google Scholar 

  32. Salioni D, Sanches S, Silva V, De Gaspari T, Sementille A (2015) Segmentation quality for augmented reality: an objective metric. In: XVII symposium on virtual and augmented reality (SVR), pp 212–219. https://doi.org/10.1109/SVR.2015.38

  33. Sanches SRR, da Silva VF, Tori R (2012) Bilayer segmentation augmented with future evidence. In: Proceedings of the 12th international conference on computational science and its applications - volume part II. ICCSA’12. https://doi.org/10.1007/978-3-642-31075-1_52. Springer, Berlin, pp 699–711

  34. Sanches SRR, Silva VF, Nakamura R, Tori R (2013) Objective assessment of video segmentation quality for augmented reality. In: Proceedings of IEEE international conference on multimedia and expo – ICME 2013. IEEE Computer Society, Washington, pp 1–6, https://doi.org/10.1109/ICME.2013.6607476

  35. Sanches SRR, Oliveira C, Sementille AC, Freire V (2019) Challenging situations for background subtraction algorithms. Appl Intell 49(5):1771–1784. https://doi.org/10.1007/s10489-018-1346-4

    Article  Google Scholar 

  36. Shi R, Ngan KN, Li S, Paramesran R, Li H (2015) Visual quality evaluation of image object segmentation: Subjective assessment and objective measure. IEEE Trans Image Process 24(12):5033–5045. https://doi.org/10.1109/TIP.2015.2473099

    Article  MathSciNet  MATH  Google Scholar 

  37. Sobral A, Vacavant A (2014) A comprehensive review of background subtraction algorithms evaluated with synthetic and real videos. Comput Vis Image Underst 122 (2014):4–21. https://doi.org/10.1016/j.cviu.2013.12.005

    Article  Google Scholar 

  38. St-Charles PL, Bilodeau GA (2014) Improving background subtraction using local binary similarity patterns. In: IEEE Winter conference on applications of computer vision (WACV), vol 2014, pp 509–515, https://doi.org/10.1109/WACV.2014.6836059

  39. Stauffer C, Grimson WEL (2000) Learning patterns of activity using real-time tracking. IEEE Trans Pattern Anal Mach Intell 22(8):747–757. https://doi.org/10.1109/34.868677

    Article  Google Scholar 

  40. Université de Sherbrooke (2018) ChangeDetection.NET – a video database for testing change detection algorithms. http://www.changedetection.net. Accessed 22 July 2018

  41. Villegas P, Marichal X (2004) Perceptually-weighted evaluation criteria for segmentation masks in video sequences. IEEE Trans Image Process 13(8):1092–1103. https://doi.org/10.1109/TIP.2004.828433

    Article  Google Scholar 

  42. Villegas P, Marichal X, Salcedo A (1999) Objective evaluation of segmentation masks in video sequences. In: Proceedings of the workshop on image analysis for multimedia interactive services - WIAMIS’99, pp 85–88

  43. Viola P, Jones M (2001) Rapid object detection using a boosted cascade of simple features. In: Proceedings of the 2001 IEEE computer society conference on computer vision and pattern recognition, vol 1, pp 511–518, https://doi.org/10.1109/CVPR.2001.990517

  44. Vojodi H, Fakhari A, Moghadam AME (2013) A new evaluation measure for color image segmentation based on genetic programming approach. Image Vis Comput 31(11):877–886. https://doi.org/10.1016/j.imavis.2013.08.002

    Article  Google Scholar 

  45. Yin P, Criminisi A, Winn J, Essa I (2011) Bilayer segmentation of webcam videos using tree-based classifiers. IEEE Trans Pattern Anal Mach Intell 33(1):30–42. https://doi.org/10.1109/TPAMI.2010.65

    Article  Google Scholar 

  46. Zhao Z, Bouwmans T, Zhang X, Fang Y (2012) A fuzzy background modeling approach for motion detection in dynamic backgrounds. In: Wang FL, Lei J, Lau RWH, Zhang J (eds) Multimedia and signal processing. Springer, Berlin, pp 177–185, https://doi.org/10.1007/978-3-642-35286-7_23

  47. Zheng Y, Kambhamettu C (2009) Learning based digital matting. In: Proceedings of IEEE 12th international conference on computer vision, pp 889–896, DOI https://doi.org/10.1109/ICCV.2009.5459326

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvio R. R. Sanches.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanches, S.R.R., Sementille, A.C., Tori, R. et al. PAD: a perceptual application-dependent metric for quality assessment of segmentation algorithms. Multimed Tools Appl 78, 32393–32417 (2019). https://doi.org/10.1007/s11042-019-07958-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-019-07958-7

Keywords

Navigation