Abstract
Reversible watermarking technologies have rapidly developed in recent years, but there are few research achievements in the area of reversible watermarking technology for color images. Thus, in this study, a reversible data hiding (RDH) algorithm for color images was constructed based on three-dimensional (3D) histogram shifting. The algorithm improves the peak signal-to-noise ratio and reduces distortion by using rhombus prediction to predict the pixel values of each of the RGB channels of a color image to establish 3D prediction-error groups, and by modifying the mappings of the prediction-error groups in the prediction-error histogram such that mappings with high distortion are rejected and new mappings can be constructed. The experimental results proved that, under the condition of the same embedding capacity, the proposed color image-purposed algorithm, which takes advantage of the correlations between RGB channels, can yield lower distortion than conventional RDH algorithms for color images.














Similar content being viewed by others
References
Fridrich J, Goljan M, Du R (2001) Invertible Authentication, in: Proceedings of SPIE Security Watermarking Multimedia Contents, San Jose, CA, January, 197–208
He W, Cai J, Xiong G et al. (2017) Improved reversible data hiding using pixel-based pixel value grouping[J]. Optik-International Journal for Light and Electron Optics
Hou D, Zhang W, Chen K et al (2019) Reversible data hiding in color image with grayscale invariance[J]. IEEE Trans Circuits Syst Video Technol 29(2):363–374
Jiang R, Zhang W, Hou D et al (2018) Reversible data hiding for 3D mesh models with three-dimensional prediction-error histogram modification[J]. Multimed Tools Appl 77(5):5263–5280 (PEE)
Kamstra L, Heijmans HJAM (2005) Reversible data embedding into images using wavelet technique and sorting. IEEE Trans Image Process 14(12):2082–2090
Lee S, Yoo CD, Kalker T (2007) Reversible image watermarking based on integer-to-integer wavelet transform. IEEE Trans Inf Forensics Secur 2(3):321–330
Li XL, Yang B, Zeng TY (2011) Efficient reversible watermarking based on adaptive prediction-error expansion and pixel selection. IEEE Trans Image Process 20(12):3524–3533
Li XL, Zhang WM, Gui XL, Yang B (2013) A novel reversible data hiding scheme based on two-dimensional difference-histogram modification. IEEE Trans Inf Forensic Secur 8(7):1091–1100
Li X, Li B, Yang B, Zeng T (2013) General framework to histogram-shifting-based reversible data hiding. IEEE Trans Image Process 22(6):2181–2191
Li X, Li J, Li B, Yang B (2013) High-fidelity reversible data hiding scheme based on pixel-value-ordering and prediction-error expansion. Signal Process 93(1):198–205
Li J, Li X, Yang B (2013) Reversible data hiding scheme for color image based on prediction-error expansion and cross-channel correlation. Signal Process 93(9):2748–2758
Ni Z, Shi YQ, Ansari N, Su W (2006) Reversible data hiding. IEEE Trans Circuits Syst Video Technol 16:354–362
Ou B, Li X, Zhao Y, Ni R, Shi Y-Q (2013) Pairwise prediction-error expansion for efficient reversible data hiding. IEEE Trans Image Process 22(12):5010–5021
Ou B, Li X, Zhao Y, Ni R (2015) Efficient color image reversible data hiding based on channel-dependent payload partition and adaptive embedding. Signal Process 108(0):642–657
Peng F, Li X, Yang B (2014) Improved pvo-based reversible data hiding. Digital Signal Process 25(0):255–265
Puteaux P, Puech W (2018) An Efficient MSB Prediction-Based Method for High-Capacity Reversible Data Hiding in Encrypted Images[J]. IEEE Trans Inf Forensics Secur 13(7):1670–1681 (PE)
Sachnev V, Kim HJ, Nam J, Suresh S, Shi YQ (2009) Reversible watermarking algorithm using sorting and prediction. IEEE Trans Circuits Syst Video Technol 19(7):989–999
Selvam P, Balachandran S, Iyer SP et al (2017) Hybrid transform based reversible watermarking technique for medical images in telemedicine applications[J]. Optik-Int J Light Electron Opt 145:655–671
Thodi DM, Rodríguez JJ (2007) Expansion embedding techniques for reversible watermarking. IEEE Trans Image Process 16(3):721–730
Tian J (2003) Reversible data embedding using a difference expansion. IEEE Trans Circuits Syst Video Technol 13(8):890–896
Wang X, Ding J, Pei Q (2015) A novel reversible image data hiding scheme based on pixel value ordering and dynamic pixel block partition. Inf Sci 310(0):16–35
Weng S, Zhao Y, Pan JS et al (2008) Reversible watermarking based on invariability and adjustment on pixel pairs[J]. IEEE signal process letter 15:721–724
Weng S, Pan J, Li L (2016) Reversible data hiding based on an adaptive pixel-embedding strategy and two-layer embedding[J]. Inf Sci 369:144–159
Weng S, Liu Y, Pan JS et al (2016) Reversible data hiding based on flexible block-partition and adaptive block-modification strategy[J]. J Vis Commun Image Represent 41:185–199
Weng S, Pan JS, Jiehang D et al (2018) Pairwise IPVO-based reversible data hiding[J]. Multimed Tools Appl 77(11):13419–13444
Weng S, Chen Y, Hong W et al (2019) An Improved Integer Transform Combining with an Irregular Block Partition[J]. Symmetry 11(1):49
Yao H, Qin C, Tang Z et al (2017) Guided filtering based color image reversible data hiding[J]. J Vis Commun Image Represent 43:152–163
Yi S, Zhou Y, Hua Z (2018) Reversible data hiding in encrypted images using adaptive block-level prediction-error expansion[J]. Signal Process Image Commun 64:78–88 (PEE)
Y-Q Shi X, Li X, Zhang H-TW, Ma B (2016) Reversible data hiding: advances in the past two decades. IEEE Access 4:3210–3237
Acknowledgements
This work was supported by the Key Basic Research Plan in Shaanxi Province (Grant No. 2017ZDXM-GY-014).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Zhan, Y., Su, Y., Wang, X. et al. Three-dimensional Prediction-Error Histograms Based Reversible Data Hiding Algorithm for Color Images. Multimed Tools Appl 78, 35289–35311 (2019). https://doi.org/10.1007/s11042-019-07962-x
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11042-019-07962-x