Skip to main content

Advertisement

Log in

A generic codebook based approach for gait recognition

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Gait refers to the walking style of a person and it has emerged as an important biometric feature for person identification. The gait recognition algorithms proposed in literature exploit various types of information from the gait video sequence, such as, the skeletal data, human body shape, and silhouettes; and use these features to recognize the individuals. This paper presents the proposal of using a generic codebook in gait recognition. The idea is built upon a novel gait representation which exploits the spatiotemporal motion characteristics of the individual for identification. In particular, we propose to use a set of sample gait sequences to construct a generic codebook and use it to build a gait signature for person identification. To this end, we chose synthetic gait sequences of CMU MoCap gait database due to its diversity in walking styles. A set of spatiotemporal features are extracted from these sequences to build a generic codebook. The motion descriptors of real gait sequences are encoded using this generic codebook and Fisher vector encoding; the classification is performed using support vector machine. An extensive evaluation of this novel proposal is carried out using five benchmark gait databases: NLPR, CMU MoBo, TUM GAID, CASIA-B, and CASISA-C. In all experiments, the generic codebook is used in feature encoding. The performance of the proposed algorithm is also compared with the state-of-the-art gait recognition techniques and the results show that the idea of using a generic codebook in gait recognition is practical and effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. https://www.csie.ntu.edu.tw/∼cjlin/liblinear/

  2. http://www.di.unito.it/∼farid/Research/GRGC.html

References

  1. Anzai Y (2012) Pattern recognition and machine learning. Elsevier, Amsterdam

    MATH  Google Scholar 

  2. Bashir K, Xiang T, Gong S (2008) Feature selection for gait recognition without subject cooperation. In: BMVC, pp 1–10

  3. Bashir K, Xiang T, Gong S (2009) Gait recognition using gait entropy image. In: IET ICDP, pp 1–6

  4. Bashir K, Xiang T, Gong S (2010) Gait recognition without subject cooperation. Pattern Recognit Lett 31(13):2052–2060

    Google Scholar 

  5. Bay H, Tuytelaars T, Van Gool L (2006) Surf: speeded up robust features. In: ECCV 2006, pp 404–417

    Google Scholar 

  6. BenAbdelkader C, Cutler RG, Davis LS (2004) Gait recognition using image self-similarity. EURASIP J Adv Signal Process 2004(4):1–14

    Google Scholar 

  7. Bouchrika I, Carter JN, Nixon M (2016) Towards automated visual surveillance using gait for identity recognition and tracking across multiple non-intersecting cameras. Multimed Tools Appl 75(2):1201–1221

    Google Scholar 

  8. Bouchrika I, Nixon M (2007) Model-based feature extraction for gait analysis and recognition. In: ICCV. Springer, pp 150–160

  9. Castro FM, Marín-Jiménez MJ, Mata NG, Muñoz-Salinas R (2017) Fisher motion descriptor for multiview gait recognition. Int J Pattern Recognit Artif Intell 31(01):1756002. https://doi.org/10.1142/S021800141756002X. http://www.worldscientific.com/doi/abs/10.1142/S021800141756002X

    Google Scholar 

  10. Castro FM, Marín-jiménez MJ, Guil N, de la Blanca NP (2017) Automatic learning of gait signatures for people identification. In: International work-conference on artificial neural networks. Springer, pp 257–270

  11. Chai Y, et al. (2006) A novel human gait recognition method by segmenting and extracting the region variance feature. In: Proc. Int. Conf. Pattern Recognit. (ICPR), vol 4, pp 425–428

  12. Chen C, et al. (2009) Frame difference energy image for gait recognition with incomplete silhouettes. Pattern Recognit Lett 30(11):977–984

    Google Scholar 

  13. Chen S, Gao Y (2007) An invariant appearance model for gait recognition. In: Proc. IEEE Int. Conf. Multimed. and expo (ICME). IEEE, pp 1375–1378

  14. Choudhury SD, Tjahjadi T (2012) Silhouette-based gait recognition using procrustes shape analysis and elliptic fourier descriptors. Pattern Recognit 45 (9):3414–3426

    Google Scholar 

  15. CMU motion capture database. http://mocap.cs.cmu.edu/

  16. Cunado D, Nixon M, Carter JN (2003) Automatic extraction and description of human gait models for recognition purposes. Comput Vis Image Underst 90(1):1–41

    Google Scholar 

  17. Dadashi F, et al. (2009) Gait recognition using wavelet packet silhouette representation and transductive support vector machines. In: 2nd Int. congress on image and signal process, pp 1–5

  18. Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. In: IEEE CVPR, vol 1, pp 886–893. https://doi.org/10.1109/CVPR.2005.177

  19. Dalal N, Triggs B, Schmid C (2006) Human detection using oriented histograms of flow and appearance. In: ECCV, pp 428–441

  20. DeCann B, Ross A (2010) Gait curves for human recognition, backpack detection, and silhouette correction in a nighttime environment. In: SPIE defense, security, and sensing. International society for optics and photonics, pp 76670q–76670q

  21. Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the em algorithm. J R Stat Soc Ser B-Stat Methodol 1977:1–38

    MathSciNet  MATH  Google Scholar 

  22. Dupuis Y, Savatier X, Vasseur P (2013) Feature subset selection applied to model-free gait recognition. Image Vis Comput 31(8):580–591

    Google Scholar 

  23. Fan RE, et al. (2008) Liblinear: a library for large linear classification. J Mach Learn Res 9(Aug):1871–1874

    MATH  Google Scholar 

  24. Geng X, Wang L, Li M, Wu Q, Smith-Miles K (2007) Distance-driven fusion of gait and face for human identification in video. In: Image and vision computing conference. Image and vision computing New Zealand

  25. Goffredo M, Bouchrika I, Carter JN, Nixon M (2010) Performance analysis for automated gait extraction and recognition in multi-camera surveillance. Multimed. Tools Appl. 50(1):75–94

    Google Scholar 

  26. Goffredo M, Carter JN, Nixon M (2008) Front-view gait recognition. In: IEEE Int. Conf. Biometrics: theory, Appl. and Systems (BTAS). IEEE, pp 1–6

  27. Gross R, Shi J (2001) The CMU motion of body (mobo) database. Gait Video Sequences

  28. Hofmann M, Bachmann S, Rigoll G (2012) 2.5D gait biometrics using the depth gradient histogram energy image. In: IEEE BATS Conf., pp 399–403

  29. Hu M, Wang Y, Zhang Z (2013) Cross-view gait recognition with short probe sequences: from view transformation model to view-independent stance-independent identity vector. Int J Pattern Recognit Artif Intell 27 (06):1350017. https://doi.org/10.1142/S0218001413500171. http://www.worldscientific.com/doi/abs/10.1142/S0218001413500171

    Google Scholar 

  30. Hu M, Wang Y, Zhang Z, Zhang D, Little JJ (2013) Incremental learning for video-based gait recognition with lbp flow. IEEE Trans Cybern 43(1):77–89

    Google Scholar 

  31. Kale A, Cuntoor N, Yegnanarayana B, Rajagopalan A, Chellappa R (2003) Gait analysis for human identification. In: Int. Conf. on audio-and video-based biometric person authentication. Springer, pp 706–714

  32. Kale A, Sundaresan A, Rajagopalan A, Cuntoor NP, Roy-Chowdhury AK, Kruger V, Chellappa R (2004) Identification of humans using gait. IEEE Trans Image Process 13(9):1163–1173

    Google Scholar 

  33. Khan M, et al. (2016) Automatic recognition of movement patterns in the vojta-therapy using rgb-d data. In: Proc. Int. Conf. Image Process. (ICIP), pp 1235–1239

  34. Khan MH (2018) Human activity analysis in visual surveillance and healthcare, vol 45. Logos Verlag Berlin GmbH, Berlin

    Google Scholar 

  35. Khan MH, Farid MS, Grzegorzek M (2017) Person identification using spatiotemporal motion characteristics. In: Proc. Int. Conf. Image Process. (ICIP). IEEE, pp 166–170

  36. Khan MH, Farid MS, Grzegorzek M (2018) Using a generic model for codebook-based gait recognition algorithms. In: Int. workshop biometrics forensics (IWBF). IEEE, pp 1–7

  37. Khan MH, Farid MS, Grzegorzek M (2019) Spatiotemporal features of human motion for gait recognition. Signal Image Video Process 13(2):369–377

    Google Scholar 

  38. Khan MH, Farid MS, Zahoor M, Grzegorzek M (2018) Cross-view gait recognition using non-linear view transformations of spatiotemporal features. In: Proc. Int. Conf. Image Process. (ICIP). IEEE, pp 773–777

  39. Khan MH, Helsper J, Farid MS, Grzegorzek M (2018) A computer vision-based system for monitoring vojta therapy. J Med Informat 113:85–95

    Google Scholar 

  40. Khan MH, Li F, Farid MS, Grzegorzek M Kurzynski M, Wozniak M, Burduk R (eds) (2017) Gait recognition using motion trajectory analysis. Springer, Cham

  41. Kusakunniran W (2014) Attribute-based learning for gait recognition using spatio-temporal interest points. Image Vis Comput 32(12):1117–1126

    Google Scholar 

  42. Kusakunniran W, Wu Q, Li H, Zhang J (2009) Automatic gait recognition using weighted binary pattern on video. In: IEEE Int. Conf. Adv. video signal based surveillance (AVSS). IEEE, pp 49–54

  43. Kusakunniran W, Wu Q, Zhang J, Li H (2011) Pairwise shape configuration-based psa for gait recognition under small viewing angle change. In: IEEE Int. Conf. Adv. Video signal based surveillance (AVSS). IEEE, pp 17–22

  44. Laptev I, Marszalek M, Schmid C, Rozenfeld B (2008) Learning realistic human actions from movies. In: IEEE CVPR, pp 1–8, DOI https://doi.org/10.1109/CVPR.2008.4587756

  45. Lee H, Hong S, Kim E (2008) An efficient gait recognition based on a selective neural network ensemble. Int J Imaging Syst Technol 18(4):237–241

    Google Scholar 

  46. Lee L, Grimson WEL (2002) Gait analysis for recognition and classification. In: Proc. Int. Conf. Automatic face and gesture recognit. IEEE, pp 155–162

  47. Liang J, Chen Y, Hu H, Zhao H (2006) Appearance-based gait recognition using independent component analysis. In: Int. Conf. on natural computation. Springer, pp 371–380

  48. Loula F, Prasad S, Harber K, Shiffrar M (2005) Recognizing people from their movement. J Exp Psychol-Hum Percept 31(1):210

    Google Scholar 

  49. Lowe DG (1999) Object recognition from local scale-invariant features. In: EEE ICCV, vol 2, pp 1150–1157 vol.2. https://doi.org/10.1109/ICCV.1999.790410

  50. Lu J, Zhang E, Jing C (2006) Gait recognition using wavelet descriptors and independent component analysis. In: Int. Symp. Neural networks. Springer, pp 232–237

    Google Scholar 

  51. Lun R, Zhao W (2015) A survey of applications and human motion recognition with microsoft kinect. Int J Pattern Recognit Artif Intell 29 (05):1555008. https://doi.org/10.1142/S0218001415550083. http://www.worldscientific.com/doi/abs/10.1142/S0218001415550083

    Google Scholar 

  52. Man J, Bhanu B (2006) Individual recognition using gait energy image. IEEE Trans Pattern Anal Mach Intell 28(2):316–322

    Google Scholar 

  53. Nixon M, et al. (2009) Model-based gait recognition. In: Enclycopedia of biometrics. Springer, pp 633–639. https://eprints.soton.ac.uk/268238/

  54. Peng X, Wang L, Wang X, Qiao Y (2016) Bag of visual words and fusion methods for action recognition: comprehensive study and good practice. Comput Vis Image Underst 150:109–125

    Google Scholar 

  55. Perronnin F, Sánchez J, Mensink T (2010) Improving the fisher kernel for large-scale image classification. In: ECCV. Springer, pp 143–156

  56. Rokanujjaman M, Islam MS, Hossain MA, Islam MR, Makihara Y, Yagi Y (2015) Effective part-based gait identification using frequency-domain gait entropy features. Multimed Tools Appl 74(9):3099–3120

    Google Scholar 

  57. Samangooei S, Nixon M (2010) Performing content-based retrieval of humans using gait biometrics. Multimed Tools Appl 49(1):195–212

    Google Scholar 

  58. Sánchez J, et al. (2013) Image classification with the fisher vector: theory and practice. Int J Comput Vis 105(3):222–245

    MathSciNet  MATH  Google Scholar 

  59. Shaikh SH, Saeed K, Chaki N (2014) Gait recognition using partial silhouette-based approach. In: Int. Conf. Signal process. and integrated netw. (SPIN). IEEE, pp 101–106

  60. Sivapalan S, Chen D, Denman S, Sridharan S (2011) Fookes, c.: 3d ellipsoid fitting for multi-view gait recognition. In: IEEE Int. Conf. Adv. Video signal based surveillance (AVSS). IEEE, pp 355–360

  61. Su H, Huang F (2006) Gait recognition using principal curves and neural networks. In: Int. Symp. Neural Networks. Springer, pp 238–243

  62. Sun C, Nevatia R (2013) Large-scale web video event classification by use of fisher vectors. In: IEEE Int. Workshop Appl. Comput. Vis. (WACV). IEEE, pp 15–22

  63. Tan D, Huang K, Yu S, Tan T (2007) Orthogonal diagonal projections for gait recognition. In: Proc. Int. Conf. Image process. (ICIP), vol 1. IEEE, pp i–337

  64. Tan D, Huang K, Yu S, Tan T (2007) Recognizing night walkers based on one pseudoshape representation of gait. In: Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern recognit. (CVPR). IEEE, pp 1–8

  65. Tan D, Huang K, Yu S, Tan T (2007) Uniprojective features for gait recognition. In: Int. Conf. Biometrics (ICB). Springer, pp 673–682

  66. Tan D, Yu S, Huang K, Tan T (2007) Walker recognition without gait cycle estimation. In: Int. Conf. on biometrics, pp 222–231

    Google Scholar 

  67. Tan D, et al. (2006) Efficient night gait recognition based on template matching. In: Proc. Int. Conf. Pattern recognit. (ICPR), vol 3, pp 1000–1003

  68. Veeraraghavan A, Chowdhury AR, Chellappa R (2004) Role of shape and kinematics in human movement analysis. In: Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. (CVPR), vol 1. IEEE, pp i–730

  69. Veeraraghavan A, Roy-Chowdhury AK, Chellappa R (2005) Matching shape sequences in video with applications in human movement analysis. IEEE Trans Pattern Anal Mach Intell 27(12):1896–1909

    Google Scholar 

  70. Wan M, Lai Z, Yang G, Yang Z, Zhang F, Zheng H (2017) Local graph embedding based on maximum margin criterion via fuzzy set. Fuzzy Sets Syst 318:120–131

    MathSciNet  Google Scholar 

  71. Wan M, Li M, Yang G, Gai S, Jin Z (2014) Feature extraction using two-dimensional maximum embedding difference. Information Science 274:55–69

    Google Scholar 

  72. Wan M, Yang G, Gai S, Yang Z (2017) Two-dimensional discriminant locality preserving projections (2ddlpp) and its application to feature extraction via fuzzy set. Multimed Tools Appl 76(1):355–371

    Google Scholar 

  73. Wang C, et al. (2012) Human identification using temporal information preserving gait template. IEEE Trans Pattern Anal Mach Intell 34(11):2164–2176

    Google Scholar 

  74. Wang H, Schmid C (2013) Action recognition with improved trajectories. In: IEEE ICCV, pp 3551–3558

  75. Wang L, Ning H, Tan T, Hu W (2004) Fusion of static and dynamic body biometrics for gait recognition. IEEE Trans Circuits Syst Video Technol 14(2):149–158

    Google Scholar 

  76. Wang L, Tan T, Hu W, Ning H (2003) Automatic gait recognition based on statistical shape analysis. IEEE Trans Image Process 12(9):1120–1131

    MathSciNet  Google Scholar 

  77. Wang L, Tan T, Ning H, Hu W (2003) Silhouette analysis-based gait recognition for human identification. IEEE Trans Pattern Anal Mach Intell 25 (12):1505–1518

    Google Scholar 

  78. Whytock T, Belyaev A, Robertson N (2014) Dynamic distance-based shape features for gait recognition. J Math Imaging Vis 50(3):314–326

    MATH  Google Scholar 

  79. Wu Q, Wang L, Geng X, Li M, He X (2007) Dynamic biometrics fusion at feature level for video based human recognition. In: Proc. of image and Vis. Computing New Zealand. Citeseer, pp 152–157

  80. Yang Y, Tu D, Li G (2014) Gait recognition using flow histogram energy image. In: Proc. Int. Conf. Pattern recognit. (ICPR), pp 444–449

  81. Yu S, et al. (2006) A framework for evaluating the effect of view angle, clothing and carrying condition on gait recognition. In: Proc. Int. Conf. Pattern recognit. (ICPR), vol 4, pp 441–444

  82. Zeng W, Wang C, Yang F (2014) Silhouette-based gait recognition via deterministic learning. Pattern Recognit 47(11):3568–3584

    Google Scholar 

  83. Zhang E, Zhao Y, Xiong W (2010) Active energy image plus 2dlpp for gait recognition. Signal Process 90(7):2295–2302

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Hassan Khan.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M.H., Farid, M.S. & Grzegorzek, M. A generic codebook based approach for gait recognition. Multimed Tools Appl 78, 35689–35712 (2019). https://doi.org/10.1007/s11042-019-08007-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-019-08007-z

Keywords

Navigation