Abstract
Research on Content-Based Image Retrieval is being done to improvise existing methods. Most of the techniques that were proposed use color and texture features independently. In this paper, to get the correspondence between color and texture, we use congruence on Hue, Saturation, and Intensity by using inter-channel voting. Gray Level Co-occurrence Matrix (GLCM) on Diagonally Symmetric Pattern is computed to get texture features of an image. The similarity metrics between two images is computed using congruence and GLCM. To measure the performance; Average Precision Rate (APR), Average Recall Rate (ARR), F-measure, Average Normalized Modified Retrieval Rank (ANMRR) are calculated. In addition to these parameters, one more parameter has been proposed: Total Minimum Retrieval Epoch (TMRE) to calculate the average number of images to be traversed for each query image to get all the images of that category. To validate the performance of the proposed method, it has been applied to six image databases: Corel-1 K, Corel-5 K, Corel-10 K, VisTex, STex, and Color Brodatz. The results of most of the databases show significant improvement.

































Similar content being viewed by others
References
Al-Shemarry MS, Li Y, Abdulla S (2019) An Efficient Texture Descriptor for the Detection of License Plates from Vehicle Images in Difficult Conditions. IEEE Trans Intell Transp Syst. https://doi.org/10.1109/TITS.2019.2897990
Aptoula E, Lefevre S (2009) Morphological Description of Color Images for Content-Based Image Retrieval. IEEE Trans Image Process 18(11):2505–2517. https://doi.org/10.1109/TIP.2009.2027363
Bhunia AK, Bhattacharyya A, Banerjee P, Roy PP, Murala S (2018) A Novel Feature Descriptor for Image Retrieval by Combining Modified Color Histogram and Diagonally Symmetric Co-occurrence Texture Pattern. Preprint Submitted. arXiv preprint arXiv:1801.00879.
Chen JJ, Rong CS, Grimson WEL, Liu JL, Shiue DH (2011) Object Segmentation of Database Images by Dual Multiscale Morphological Reconstructions and Retrieval Applications. IEEE Trans Image Process 21(2):828–843. https://doi.org/10.1109/TIP.2011.2166558
Chun YD, Kim NC, Jang IH (2008) Content-based image retrieval using multiresolution color and texture features. IEEE Trans Multimedia 10(6):1073–1084. https://doi.org/10.1109/TMM.2008.2001357
Clausi DA (2002) An analysis of co-occurrence texture statistics as a function of grey level quantization. Can J Remote Sens 28(1):45–62. https://doi.org/10.5589/m02-004
Connolly C, Fleiss T (1997) A study of efficiency and accuracy in the transformation from RGB to CIELAB color space. IEEE Trans Image Process 6(7):1046–1048. https://doi.org/10.1109/83.597279
Daschiel H, Datcu M (2005) Design and Evaluation of Human–Machine Communication for Image Information Mining. IEEE Trans Multimedia 7(6):1030–1046. https://doi.org/10.1109/TMM.2005.858383
Dong-Chen, Abdelmounaime Safia, Multiband Texture (MBT) database, https://multibandtexture. recherche.usherbrooke.ca/index.html (Accessed 14 April 2019).
Gnaneswara Rao N, Sravani T, Vijaya Kumar V (2014) OCRM: Optimal Cost Region Matching Similarity Measure for Region Based Image Retrieval. Int J Multimed Ubiquit Eng 9(4):327–342. https://doi.org/10.14257/ijmue.2014.9.4.34
Gonzalez RC, Woods RE (2018) Digital Image Processing – 4th Edition. Pearson, New York, USA
Haralick RM, Shanmugam K (1973) Textural features for image classification. IEEE Trans Syst Man Cybern 3(6):610–621. https://doi.org/10.1109/TSMC.1973.4309314
Heikkila M, Pietikainen M, Schmid C (2006) Description of interest regions with center-symmetric local binary patterns. In Computer vision, graphics and image processing Springer, Berlin, Heidelberg. 58–69. https://doi.org/10.1016/j.neucom.2015.03.015.
Hu R, Barnard M, Collomosse J (2010) Gradient field descriptor for sketch based retrieval and localization. IEEE International Conference on Image Processing, 1025–1028.
Hu RX, Jia W, Ling H, Zhao Y, Gui J (2014) Angular pattern and binary angular pattern for shape retrieval. IEEE Trans Image Process 23(3):1118–1127. https://doi.org/10.1109/TIP.2013.2286330
Huang J, Kumar SR, Mitra M, Zhu WJ, Zabih R (1997) Image indexing using color correlograms. Computer Vision and Pattern Recognition Proceedings, IEEE Computer Society Conference, 762–768
Joblove GH, Greenberg D (1978) Color Space for Computer Graphics. Program of Computer Graphics, Cornell University, 20–25.
Karargyris A, Siegelman J, Tzortzis D, Jaeger S, Candemir S, Xue Z, Santosh KC, Vajda S, Antani S, Folio L, Thoma GR (2015) Combination of texture and shape features to detect pulmonary abnormalities in digital chest X-rays. Int J Comput Assist Radiol Surg 11(1):99–106. https://doi.org/10.1007/s11548-015-1242-x
Kekre HB, Thepade S, Das RKK, Ghosh S (2012) Image Classification using Block Truncation Coding with Assorted Color Spaces. Int J Electr Comput Syst Eng 44(6):0975–8887. https://doi.org/10.5120/6265-8418
Konstantinidis K, Gasteratos A, Andreadis I (2005) A Image retrieval based on fuzzy color histogram processing. Opt Commun 248(4–6):375–386. https://doi.org/10.1016/j.optcom.2004.12.029
Roland Kwitt, Salzburg Texture Image Database, http://www.wavelab.at/sources/STex/, (Accessed 14 April 2019).
Li B, Sun F, Zhang Y (2019) Building Recognition based on Sparse Representation of Spatial Texture and Color Features Digital Object Identifier. Special Section On Theory, Algorithms, And Applications Of Sparse Recovery 7: 37220–37227. DOI: https://doi.org/10.1109/ACCESS.2019.2905304.
Lin CH, Chen RT, Chan YK (2009) A smart content-based image retrieval system based on color and texture feature. Image Vis Comput 27(6):658–665. https://doi.org/10.1016/j.imavis.2008.07.004
Linde Y, Buzo A, Gray R (1980) An algorithm for vector quantizer design. IEEE Trans Commun 28(1):84–95. https://doi.org/10.1109/TCOM.1980.1094577
Lipo LZ, Lin WW (2011) Semisupervised Biased Maximum Margin Analysis for Interactive Image Retrieval. IEEE Trans Image Process 21(4):2294–2308. https://doi.org/10.1109/TIP.2011.2177846
Liu L, Chen J, Zhao G, Fieguth P, Chen X, Pietikainen M (2019) Texture Classification in Extreme Scale Variations using GANet. IEEE Trans Image Process DOI: arXiv:1802.04441v1.
Guang-Hai Liu et al., Corel-10k dataset, http://www.ci.gxnu.edu.cn/cbir/Dataset.aspx (Accessed 14 April 2019).
Martínez JC, Hidalgo JMS, Jimenez PMM, Sanchez D (2017) Fuzzy Color Spaces: A Conceptual Approach to Color Vision. IEEE Trans Fuzzy Syst 25(5):1264–1280. https://doi.org/10.1109/TFUZZ.2016.2612259
Mathew SP, Balas VE, Zachariah KP (2015) A content-based image retrieval system based on convex hull geometry. Acta Polytechnica Hungarica 12(1):103–116. https://doi.org/10.12700/APH.12.1.2015.1.7
Murala S, Maheshwari RP, Balasubramanian R (2012) Local tetra patterns: a new feature descriptor for content-based image retrieval. IEEE Trans Image Process 21(5):2874–2886. https://doi.org/10.1109/TIP.2012.2188809
Naidu RR, Jampana P, Sastry CS (2016) Deterministic Compressed Sensing Matrices: Construction via Euler Squares and Applications. IEEE Trans Signal Process 64(14):3566–3575. https://doi.org/10.1109/TSP.2016.2550020
Jens-Rainer Ohm, Leszek Cieplinski, Heon Jun Kim, Santhana Krishnamachari, B. S. Manjunath, Dean S. Messing, Akio Yamada (2001) The MPEG-7 Color Descriptors, In Manjunath B.S. et al. (ed) Introduction to MPEG 7: Multimedia Content Description Language, John Wiley, and Sons, England, pp. 187–202.
Ojala T, Pietikainen M, Maenpaa T (2002) Multiresolution gray-scale and rotation invariant texture classification with Local Binary Patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987. https://doi.org/10.1109/TPAMI.2002.1017623
Osowski S (2002) Fourier and wavelet descriptors for shape recognition using neural networks-a comparative study. Pattern Recogn 35(9):1949–1957. https://doi.org/10.1016/S0031-3203(01)00153-4
Alex Sandy Pentland and Ted Adelson, VisTex Dataset, http://vismod.media.mit.edu/pub/VisTex/, (Accessed 14 April 2019).
Quellec G, Lamard M, Bekri L, Cazuguel G, Roux C, Cochener B (2010) Medical Case Retrieval from a Committee of Decision Trees. IEEE Trans Inf Technol Biomed 14(5):1227–1235. https://doi.org/10.1109/TITB.2010.2053716
Ramos J, Kockelkorn TTJP, Ramos I, Ramos R, Grutters J, Viergever MA, Ginneken BM, Campilho A (2016) Content-Based Image Retrieval by Metric Learning From Radiology Reports: Application to Interstitial Lung Diseases. J Biomed Health Inform 20(1):281–292. https://doi.org/10.1109/JBHI.2014.2375491
Santosh KC, Antani S (2018) Automated Chest X-Ray Screening: Can Lung Region Symmetry Help Detect Pulmonary Abnormalities? IEEE Trans Med Imaging 37(5):1168–1177. https://doi.org/10.1109/TMI.2017.2775636
Santosh KC, Wendling L, Antani S, Thoma GR (2016) Overlaid arrow detection for labeling regions of interest in biomedical images. IEEE Intell Syst 31(3):66–75. https://doi.org/10.1109/MIS.2016.24
Santosh KC, Vajda S, Antani S, Thoma GR (2016) Edge map analysis in chest X-rays for automatic pulmonary abnormality screening. Int J Comput Assist Radiol Surg 11(9):1637–1646. https://doi.org/10.1007/s11548-016-1359-6
Singha M, Hemachandran K (2012) Content based image retrieval using color and texture. Signal Image Process 3(1):39–57. https://doi.org/10.5121/sipij.2012.3104
Singha M, Hemachandran K (2012) Content Based Image Retrieval using Color and Texture. Signal Image Process 3(1):239–242. https://doi.org/10.1109/ICSIP.2010.5697476
Smeulders AWM, Worring M, Santini S, Gupta A, Jain R (2000) Content-based image retrieval at the end of the early years. IEEE Trans Pattern Anal Mach Intell 22(12):1349–1380. https://doi.org/10.1109/34.895972
Strat TM (1993) Employing contextual information in computer vision. DARPA93, 217–229
Swain MJ, Ballard DH, Rochester (1991) Color Indexing. Int J Comput Vis 7(1):11–32. https://doi.org/10.1007/BF00130487
Tominaga S (1992) Color classification of natural color images. Color Res Appl 17(4):230–239. https://doi.org/10.1002/col.5080170405
Vajda SA, Karargyris A, Jaeger S, Santosh KC, Candemir S, Xue Z, Antani S, Thoma G (2018) Feature Selection for Automatic Tuberculosis Screening in Frontal Chest Radiographs. J Med Syst 42(8):146. https://doi.org/10.1007/s10916-018-0991-9
Verma M, Raman B, Murala S (2015) Local extrema co-occurrence pattern for color and texture image retrieval. Neurocomputing 165:255–269. https://doi.org/10.1016/j.neucom.2015.03.015
Wan X, Kuo CCJ (1998) A new approach to image retrieval with hierarchical color clustering. IEEE Trans Circuits Syst Video Technol 8(5):628–643. https://doi.org/10.1109/76.718509
Wang JZ, Modeling objects, Concepts, Aesthetics, and Emotions in Big Visual Data. http://wang.ist.psu.edu/docs/home.shtml (Accessed 14 April 2019).
Wang XY, Zhang BB, Yang HY (2012) Content-based image retrieval by integrating color and texture features. Multimed Tools Appl 68(3):545–569. https://doi.org/10.1007/s11042-012-1055-7
Xia Z, Zhu Y, Sun X, Qin Z, Ren K (2015) Towards Privacy-Preserving Content-Based Image Retrieval in Cloud Computing. IEEE Trans Cloud Comput 6(1):276–286. https://doi.org/10.1109/TCC.2015.2491933
Zhang B, Gao Y, Zhao S, Liu J (2010) Local derivative pattern versus Local Binary pattern: face recognition with high-order local pattern descriptor. IEEE Trans Image Process 19(2):533–544. https://doi.org/10.1109/TIP.2009.2035882
Zheng Y, Jiang Z, Zhang H, Xie F, Ma Y, Shi H (2018) Histopathological Whole Slide Image Analysis Using Context-Based CBIR. IEEE Trans Med Imaging 37(7):1641–1652. https://doi.org/10.1109/TMI.2018.2796130
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Kanaparthi, S.K., Raju, U.S.N., Shanmukhi, P. et al. Image Retrieval by Integrating Global Correlation of Color and Intensity Histograms with Local Texture Features. Multimed Tools Appl 79, 34875–34911 (2020). https://doi.org/10.1007/s11042-019-08029-7
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11042-019-08029-7