Skip to main content
Log in

A novel motion recovery using temporal and spatial correlation for a fast temporal error concealment over H.264 video sequences

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In this paper, we proposed an effective motion recovery method with low complexity for a fast temporal error concealment over H.264 video sequences. The proposed algorithm uses temporal and spatial motion vectors of a lost block and neighboring blocks. A neighboring block with minimum SAD-MV between its trajectory and trajectory of lost block is chosen as the most reliable candidate. In order to avoid the mosaic artifacts in the process of recombination of optimal blocks, final motion vector of the block is recalculated using H.264 partition information and then H,.264 1/4 interpolation is followed. The proposed method is faster and better in PSNR compared with previous algorithms. The proposed algorithm may be used as a powerful error concealment tools for real time video applications, such as mobile phone, tactile display and WSN cameras, using H.264/AVC decoder, especially in the ROI tracking applications, because of low memory requirement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Aldahdooh A, Le Callet MBP (2016) Spatio-temporal error concealment technique for high order multiple description coding schemes including subjective assessment. Int Conf Qual Multimed Exp (QoMEX) 2016

  2. Ameigeiras P, Navarro-Ortiz J, Andres-Maldonado P et al (2016) 3GPP QoS-based scheduling framework for LTE. EURASIP J Wirel Commun Netw 78:78

    Article  Google Scholar 

  3. Behar R, Samet Y, Nossenson R (2015) Session management of variable video rate streaming session over multi-channel networks, 7th International conference on Evolving Internet: 26–33

  4. Ch M, Nam Q, Ruan Q, An GY (2010) Face track in H.264 compressed domain using the Face Observation-MRF model, 2010 IEEE 10th International Conference on Signal Processing (ICSP), Beijing, 10:1283–1287

  5. Chen S-Y, Leung H (2009) A temporal approach for improving intra-frame concealment performance in H.264/AVC. IEEE Trans Circuit Syst Video Technol 19(3):422–426

    Article  Google Scholar 

  6. Chen X, Chung Y-Y, Bae C, He X, Yeh W-C (2010) An efficient error concealment algorithm for H.264/AVC using regression modeling-based prediction. IEEE Trans Consum Electron 56(4):2694–2701

    Article  Google Scholar 

  7. Choe G, Nam C, Chu C (2018) An effective temporal error concealment in H.264 video sequences based on scene change detection-PCA model. Multimed Tools Appl. https://doi.org/10.1007/s11042-018-6184-1

    Article  Google Scholar 

  8. Dehghani M, Arshad K, MacKenzie R (2015) LTE-advanced radio access enhancements, a survey. Wirel Pers Commun 80:891–921

    Article  Google Scholar 

  9. H.264 Software Coordination JM Software, ver. 15.0, 2009,1: http://iphome.hhi.de/suehring/tml

  10. Kokkonis G, Psannis KE, Roumeliotis M, Ishibashi Y (2016) Efficient algorithm for transferring a real time HEVC stream with haptic data through the internet. J Real-Time Image Proc 12(2):343–355

    Article  Google Scholar 

  11. Li J, Ngan KN (2008) Adaptive partition size temporal error concealment for H.264 using weighted double-sided EBME minimization, ELSEVIER. Signal Process Image Commun 23:451–462

    Article  Google Scholar 

  12. Marvasti-Zadeh SM, Ghanei-Yakhdan H (2016) Video temporal error concealment using improved directional boundary matching algorithm. Turk J Electr Eng Comput Sci 24:5195–5209

    Article  Google Scholar 

  13. Maung HM, Arsmvith S, Miyanaga Y (2017) Error concealment aware rate control and mode selection for HEVC video transmission, in IEEE International Conference on Consumer Electronics (ICCE) 374–375

  14. Norton RM (1984) The double exponential distribution: using Calculus to find a maximum likelihood estimator. Am Stat 38(2):135–136

    Google Scholar 

  15. Pinol P, Martinez-Rach M, Garrido P, Lopez-Granado O, Malumbres MP (2018) Error resilient coding techniques for video delivery over vehicular networks. SENSORS 17:3495. https://doi.org/10.3390/s18103495

    Article  Google Scholar 

  16. Pongpadpinit S (2009) Motion vector recovery for error concealment based on angular similarity. Proc IEEE Digital Signal Process 1–4

  17. Psannis K (2009) Efficient redundant frames encoding algorithm for streaming video over error prone wireless channels. IEICE Electron Express 6(21):1497–1502

    Article  Google Scholar 

  18. Psannis KE (2011) Motion-based competitive spatio-temporal technique with multi-frames references for efficient H.264/AVC motion information prediction, 2011 IEEE international symposium on broadband multimedia systems and broadcasting (BMSB). Nuremberg 2011:1–5

    Google Scholar 

  19. Psannis E (2016) HEVC in wireless environment. J Real-Time Image Proc 12(2):509–516

    Article  Google Scholar 

  20. Shanableh T, Assaleh K (2015) H.264/AVC motion vector concealment solutions using online and offline polynomial regression. SIViP (2015) 9:581–588. https://doi.org/10.1007/s11760-013-0489-3

    Article  Google Scholar 

  21. Suh JW, Ho YS (2002) Error concealment techniques for digital TV. IEEE Trans Broadcast 48:299–306

    Article  Google Scholar 

  22. Suh J-W, Ho Y-S (2002) Error concealment technique based on optical flow. Electron Lett 38(18):1020–1021

    Article  Google Scholar 

  23. Usman M, He X, Lam K-M et al (2016) Frame interpolation for cloud-based mobile video streaming. IEEE Trans Multimed 18(5)

    Article  Google Scholar 

  24. Wang J, Tang Y, Goto S (2009) MV distribution and neighborhood availability based error concealment order for video stream. Proc IEEE CSPA 243–246

  25. Wenger S (1999) Error patterns for Internet video experiments, ITU-T SG16 document Q15-I-16-R1, Oct 1999

  26. Wu J, Liu X-G, Yoo K-Y (2008) A temporal error concealment method for H.264/AVC using motion vector recovery. IEEE Trans Consum Electr 54(4):1880–1885

    Article  Google Scholar 

  27. Xie X, Zaitsev Y et al (2014) Compact, scalable, high-resolution, MEMS-enabled tactile displays. Proc Solid-State Sens Actuators Microsyst Workshop 8-12:127–130

    Google Scholar 

  28. Yan B, Fellow HG (2010) A hybrid frame concealment algorithm for H.264/AVC. IEEE Trans Image Process 19(1):98–107

    Article  MathSciNet  Google Scholar 

  29. Zheng J, Chau L-P (2004) A temporal error concealment algorithm for H.264 using Lagrange interpolation. Proc IEEE ISCAS 2:133–136

    Google Scholar 

  30. Zheng J, Chau L-P (2005) Efficient motion vector recovery algorithm for H.264 based on a polynomial model. IEEE Trans Multimed 7(3):507–513

    Article  Google Scholar 

  31. Zhou L (2015) Mobile device-to-device video distribution: theory and application. J ACM Trans Multi-media Comput Commun Appl (ToMM) 12(3):1253–1271

    Google Scholar 

  32. Zhou L, Wang XB, Wei T, Muntean G-M, Geller B (2010) Distributed scheduling scheme for video streaming over multi-channel multi-radio multi-hop wireless networks. IEEE J Sel Areas Commun 28(3):409–419

    Article  Google Scholar 

  33. Zhou Y, Xiang W, Wang G (2015) Frame loss concealment for Multiview video transmission over wireless multimedia sensor networks. IEEE Sensors J 15:1892

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cholman Nam.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nam, C., Chu, C., Kim, T. et al. A novel motion recovery using temporal and spatial correlation for a fast temporal error concealment over H.264 video sequences. Multimed Tools Appl 79, 1221–1240 (2020). https://doi.org/10.1007/s11042-019-08176-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-019-08176-x

Keywords

Navigation