Skip to main content

Advertisement

Log in

Hybrid feature vector based detection of Glaucoma

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

This paper focus on the investigation of the potential in retinal image analysis for the detection of Glaucoma. The computer-based analysis of the parameter involves the use of image processing algorithms for pre-processing, localization and segmentation of the region of interest (ROI), feature extraction from ROI, and classification. The initial step in computer based detection system includes the enhancing scheme for improving the contrast of the fundus image from the three databases, Drishti-GS1, FAU and RIMONE. The optic disc region has been localized from the enhanced image. Structural deformation of the optic disc region, one of the primary indicators of the glaucoma demands more accuracy in segmentation process. As a solution to this problem, non-morphological features are extracted from the enhanced optic disc region. The non-morphological features from spatial domain include Local Binary Pattern, Histogram of Oriented Gradient and Fractal features. The significant feature extracted from the spatial domain are selected using Sequential Floating Forward Selection method and are then fed into the Support Vector Machine, Naive Bayes and Logistic Regression classifiers. Performance of the classifier is analyzed by computing the accuracy, sensitivity, specificity and positive prediction value. The performance of the classifier is also validated using the receiver operating characteristics plot. The hybrid feature from the spatial domain contributes to increase the efficiency of classification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Abràmoff MD, Garvin MK, Sonka M (2010) Retinal imaging and Image analysis. IEEE Rev Biomed Eng 3:169–208

    Article  Google Scholar 

  2. Ahmed Mahfouz E, Ahmed Fahmy S (2010) Fast localization of the optic disc using projection of image features. IEEE Trans Image Process 19(12):3285–3289

    Article  MathSciNet  Google Scholar 

  3. Ali MA, Hurtut T, Faucon T, Cheriet F (2014) Glaucoma detection based on local binary patterns in fundus photographs. Proc SPIE Med Imaging, Comput Aided Diagnosis 9035:903531–903537

    Google Scholar 

  4. Aquino A, Gegundez-Arias ME, Marin D (2010) Detecting the optic disc boundary in digital fundus images using morphological, edge detection, and feature extraction techniques. IEEE Trans Med Imaging 29(11):1860–1869

    Article  Google Scholar 

  5. Bock R, Meier J, Laszlo Nyul G, Hornegger J, Michelson G (2010) Glaucoma risk index: automated Glaucoma detection from color fundus images. Med Image Anal 14(3):471–481

    Article  Google Scholar 

  6. Chaudhuri BB, Sarkar N (1995) Texture segmentation using fractal dimension. IEEE Trans Pattern Anal Mach Intell 17(1):72–77

    Article  Google Scholar 

  7. Das N, Pal A, Mazumder S, Sarkar S, Gangopadhyay D, Nasipuri M (2013) An SVM based skin disease identification using local binary patterns. Third International Conference on Advances in Computing and Communications: 208–211

  8. Dey A, Samir Bandyopadhyay K (2015) Automated Glaucoma detection using support vector machine classification method. British J Med Med Res 11(12):1–12

    Article  Google Scholar 

  9. Fumero F, Alayon S, Sanchez JL, Sigut J, Gonzalez-Hernandez M (2011) RIM-ONE: an open retinal image database for optic nerve evaluation. 2011 24th international symposium on computer-based medical systems: 1–6

  10. Guo Z, Zhang L, Zhang D (2010) A completed modeling of local binary pattern operator for texture classification. IEEE Trans Image Process 19(6):1657–1663

    Article  MathSciNet  Google Scholar 

  11. Haleem MS, Han L, Van Hemert J, Li B (2013) Automatic extraction of retinal features from colour retinal images for Glaucoma diagnosis: a review. J Comput Med Imag Graph 37:581–596

    Article  Google Scholar 

  12. Huang S-C, Cheng F-C, Chiu Y-S (2013) Efficient contrast enhancement using adaptive gamma correction with weighting distribution. IEEE Trans Image Process 22(3):1032–1041

    Article  MathSciNet  Google Scholar 

  13. Jack Kanski J, James McAllister A (1989) Glaucoma: a colour manual of diagnosis and treatment. Butterworth-Heinemann, London

    Google Scholar 

  14. Joshi GD, Sivaswamy J, Krishnadas SR (2011) Optic disc and cup segmentation from monocular color retinal images for Glaucoma assessment. IEEE Trans Med Imaging 30(6):1192–1205

    Article  Google Scholar 

  15. Kadlcek F, Fucik O (2012) Evolutionary design of local binary pattern feature shapes for object detection. 2012 NASA / ESA conference on adaptive hardware and systems: 137–144

  16. Karthikeyan S, Rengarajan N (2014) Performance analysis of gray level Cooccurrence matrix texture features for glaucoma diagnosis. Am J Appl Sci 11(2):248–257

    Article  Google Scholar 

  17. Khalil T, Khalid S, Adeel Syed M (2014) Review of machine learning techniques for Glaucoma detection and prediction. Sci Inform Conf: 438–442

  18. Khalil T, Akram MU, Khalid S, Jameel A (2017) Improved automated detection of glaucoma from fundus image using hybrid structural and textural features. IET Image Process 11(9):693–700

    Article  Google Scholar 

  19. Kolar R, Jan J (2008) Detection of Glaucomatous eye via color fundus images using fractal dimensions. Radio Eng 17(3):109–114

    Google Scholar 

  20. Lamani D, Ramegowda, Manjunath TC (2013) Fractal dimension as diagnostic parameter to detect Glaucoma. Int J Innov Eng Technol 2(1):63–69

    Google Scholar 

  21. Lamani D, Manjunath TC, Ramegowda (2014) Diagnosis of Glaucoma through semivariance fractal dimension method. International Conference on Advances in Communication, Network, and Computing: 427–436

  22. Mohammad S, Morris DT (2015) Texture analysis for Glaucoma classification. IEEE International Conference on BioSignal Analysis, Processing and Systems: 98–103

  23. Morales S, Naranjo V, Angulo J, Alcaniz M (2013) Automatic detection of optic disc based on PCA and mathematical morphology. IEEE Trans Med Imaging 32(4):786–796

    Article  Google Scholar 

  24. Nancy Salem M, Asoke Nandi K (2007) Novel and adaptive contribution of the red channel in pre-processing of colour fundus images. J Franklin Instit 344(3–4):243–256

    Article  Google Scholar 

  25. Nanni L, Lumini A, Brahnam S (2010) Local binary patterns variants as texture descriptors for medical image analysis. Artif Intell Med 49(2):117–125

    Article  Google Scholar 

  26. Nayak J, Rajendra Acharya U, Subanna Bhat P, Shetty N, Lim T-C (2009) Automated diagnosis of Glaucoma using digital fundus images. J Med Syst 33:333–346

    Google Scholar 

  27. Novo J, Penedo MG, Santos J (2009) Localisation of the optic disc by means of GA-optimised topological active nets. Image Vis Comput 27(10):1572–1584

    Article  Google Scholar 

  28. Novotný A, Odstrčilík J, Kolář R, Jan J (2010) Texture analysis of nerve fibre layer in retinal images via local binary patterns and Gaussian Markov random fields. Anal Biomed Signals Images 20:308–315

    Google Scholar 

  29. Ojala T, Pietikainen M, Harwood D (1994) Performance evaluation of texture measures with classification based on Kullback discrimination of distributions. International conference on pattern recognition, vol. 1 – Conference A: Computer Vision Image Processing: 582–585

  30. Paul Kim Y, Khan Iftekharuddin M, Pinakin Davey G, Toth M, Garas A, Hollo G, Edward Essock A (2013) Novel fractal feature-based multiclass Glaucoma detection and progression prediction. IEEE J Biomed Health Inform 17(2):269–276

    Article  Google Scholar 

  31. Quiley HA, Broman AT (2006) The number of people with Glaucoma worldwide in 2010 and 2020′. Br J Ophthalmol 90(3):262–267

    Article  Google Scholar 

  32. Rajendra Acharya U, Dua S, Xian D, Vinitha Sree S, Chua CK (2011) Automated diagnosis of Glaucoma using texture and higher order spectra features. IEEE Trans Inf Technol Biomed 15(3):449–455

    Article  Google Scholar 

  33. Rajendra Acharya U, Ng EYK, Eugene LWJ, Kevin Noronha P, Min LC, Prabhakar Nayak K, Sulatha Bhandarye V (2014) Decision support system for the Glaucoma using Gabor transformation. Biomed Signal Process Control 15:18–26

    Article  Google Scholar 

  34. Ramakrishnan R, Krishnadas SR, Khurana M, Alan Robin L (2013) Diagnosis and Management of Glaucoma. Jaypee Brothers Medical Publishers, New Delhi

    Google Scholar 

  35. Riaz F, Hassan A, Javed MY, Coimbra MT (2014) Detecting melanoma in Dermoscopy images using scale adaptive local binary patterns. 36th annual conference of the IEEE engineering in medicine and biology society: 6758–6761

  36. Saxena R, Singh D, Vashist P (2013) Glaucoma: An emerging peril. Indian J Community Med 38(3):135–137

    Article  Google Scholar 

  37. Sengar N, Dutta MK, Burget R, Ranjoha M (2017) Automated detection of suspected Glaucoma in digital fundus images. International Conference on Telecommunications and Signal Processing: 749–752

  38. Simnonthomas S, Thulasi N, Ashraf P (2014) Automated diagnosis of Glaucoma using Haralick texture features. IEEE International Conference on Information Communication and Embedded Systems: 1–6

  39. Singh RU, Gujral S (2014) Assessment of disc damage likelihood scale (DDLS) for automated Glaucoma diagnosis. Proc Comput Sci 36:490–497

    Article  Google Scholar 

  40. Sivaswamy J, Krishnadas SR, Chakravarty A, Joshi GD, Ujjwal, Syed TA (2015) A comprehensive retinal image dataset for the assessment of Glaucoma from the optic nerve head analysis. JSM Biomed Imaging Data Papers 2(1):1004–1011

    Google Scholar 

  41. Suruliandi A, Meena K, Reena Rose R (2012) Local binary pattern and its derivatives for face recognition. IET Comput Vis 6(5):480–488

    Article  Google Scholar 

  42. Townsend KA, Wollstein G, Danks D, Sung KR, Ishikawa H, Kagemann L, Gabriele ML, Schuman JS (2008) Heidelberg retina Tomograph 3 machine learning classifiers for Glaucoma detection. Br J Ophthalmol 92(6):814–818

    Article  Google Scholar 

  43. Varachiu N, Karanicolas C, Ulieru M (2002) Computational intelligence for medical knowledge acquisition with application to Glaucoma. IEEE Conference on Cognitive Informatics: 1–6

  44. Yogita Vaidya M, Sunil Doiphode E (2014) Comparison of pre-processing methods for segmentation and approximation of optic disc boundary from processed digital retinal images. IEEE International Conference on Devices, Circuits and Communications: 1–6

  45. Young Kwon H, John Fingert H, Emily Greenlee C (2008) A patient’s guide to Glaucoma. FEP Publishers

  46. Zhang Z, Liu J, Wong WK, Tan NM, Lim JH, Shijian L, Li H, Liang Z, Tien Ying Wong 2009, ‘Neuro-retinal optic cup detection in Glaucoma diagnosis’, Second Int Conf Biomed Eng Inform: 1–4

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nirmala Krishnamoorthi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishnamoorthi, N., Chinnababu, V. Hybrid feature vector based detection of Glaucoma. Multimed Tools Appl 78, 34247–34276 (2019). https://doi.org/10.1007/s11042-019-08249-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-019-08249-x

Keywords

Navigation