Skip to main content
Log in

Human gait recognition based on histogram of oriented gradients and Haralick texture descriptor

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Gait recognition is an evolving technology in the biometric domain; it aims to recognize people through an analysis of their walking pattern. One of the significant challenges of the appearance-based gait recognition system is to augment its performance by using a distinctive low-dimensional feature vector. Therefore, this study proposes the low-dimensional features that are capable of effectively capturing the spatial, gradient, and texture information in this context. These features are obtained by the computation of histogram of oriented gradients, followed by sum variance Haralick texture descriptor from nine cells of gait gradient magnitude image. Further, the performance of the proposed method is validated on five widely used gait databases. They include CASIA A gait database, CASIA B gait database, OU-ISIR D gait database, CMU MoBo database, and KTH video database. The experimental results demonstrated that the proposed approach could choose significant discriminatory features for individual identification and consequently, outperform certain state-of-the-art methods in terms of recognition performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Arora P, Srivastava S, Arora K, Bareja S (2015) Improved gait recognition using gradient histogram gaussian image. Procedia Comput Sci 58:408–413

    Article  Google Scholar 

  2. Baraldi A, Parmiggiani F (1995) An investigation of the textural characteristics associated with gray level cooccurrence matrix statistical parameters. IEEE Trans Geosci Remote Sens 33(2):293–304

    Article  Google Scholar 

  3. Bashir K, Xiang T, Gong S, Mary Q (2009) Gait representation using flow fields. In: BMVC, pp 1–11

  4. Chai Y, Wang Q, Zhao R, Wu C (2005) A new automatic gait recognition method based on the perceptual curve. In: TENCON 2005 IEEE Region 10. IEEE, pp 1–5

  5. Chen X, Weng J, Lu W, Xu J (2018) Multi-gait recognition based on attribute discovery. IEEE Trans Pattern Anal Mach Intell 40(7):1697–1710

    Article  Google Scholar 

  6. Cunningham P, Delany SJ (2007) k-nearest neighbour classifiers. Multiple Classifier Syst 34:1–17

    Google Scholar 

  7. Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. In: CVPR 2005. IEEE Computer society conference on computer vision and pattern recognition, vol 1. IEEE, pp 886–893

  8. Gross R, Shi J (2001) The cmu motion of body (mobo) database. Tech. Rep. CMU-RI-TR-01-18 Carnegie Mellon University. PA, Pittsburgh

    Google Scholar 

  9. Han J, Bhanu B (2006) Individual recognition using gait energy image. IEEE Trans Pattern Anal Mach Intell 2:316–322

    Article  Google Scholar 

  10. Haralick RM, Shanmugam K, Dinstein I (1973) Textural features for image classification. IEEE Trans Syst Man Cybern 6:610–621

    Article  Google Scholar 

  11. Hofmann M, Rigoll G (2012) Improved gait recognition using gradient histogram energy image. In: 2012 19th IEEE international conference on image processing, pp 1389–1392. https://doi.org/10.1109/ICIP.2012.6467128

  12. Hofmann M, Rigoll G (2013) Exploiting gradient histograms for gait-based person identification. In: 2013 20th IEEE International conference on image processing (ICIP). IEEE, pp 4171–4175

  13. Hofmann M, Rigoll G (2013) Exploiting gradient histograms for gait-based person identification. In: 2013 IEEE International conference on image processing, pp 4171–4175. https://doi.org/10.1109/ICIP.2013.6738859

  14. Hu M, Wang Y, Zhang Z, Little JJ, Huang D (2013) View-invariant discriminative projection for multi-view gait-based human identification. IEEE Trans Inform Forens Secur 8(12):2034–2045

    Article  Google Scholar 

  15. Huang CP, Hsieh CH, Lai KT, Huang WY (2011) Human action recognition using histogram of oriented gradient of motion history image. In: 2011 First international conference on instrumentation, measurement, computer, communication and control. IEEE, pp 353–356

  16. Kellokumpu V, Zhao G, Li SZ, Pietikäinen M (2009) Dynamic texture based gait recognition. In: International conference on biometrics. Springer, pp 1000–1009

  17. Kira K, Rendell LA (1992) The feature selection problem: traditional methods and a new algorithm. Aaai 2:129–134

    Google Scholar 

  18. Kusakunniran W (2014) Attribute-based learning for gait recognition using spatio-temporal interest points. Image Vis Comput 32(12):1117–1126

    Article  Google Scholar 

  19. Kusakunniran W (2014) Recognizing gaits on spatio-temporal feature domain. IEEE Trans Inform Forens Secur 9(9):1416–1423

    Article  Google Scholar 

  20. Kusakunniran W, Wu Q, Zhang J, Li H (2010) Support vector regression for multi-view gait recognition based on local motion feature selection. In: 2010 IEEE Conference on computer vision and pattern recognition (CVPR). IEEE, pp 974–981

  21. Kusakunniran W, Wu Q, Zhang J, Li H, Wang L (2013) Recognizing gaits across views through correlated motion co-clustering. IEEE Trans Image Process 23(2):696–709

    Article  MathSciNet  Google Scholar 

  22. Lee CP, Tan AW, Tan SC (2013) Gait recognition via optimally interpolated deformable contours. Pattern Recogn Lett 34(6):663–669

    Article  Google Scholar 

  23. Lee CP, Tan AW, Tan SC (2014) Time-sliced averaged motion history image for gait recognition. J Vis Commun Image Represent 25(5):822–826

    Article  Google Scholar 

  24. Lishani AO, Boubchir L, Khalifa E, Bouridane A (2017) Human gait recognition based on haralick features. SIViP 11(6):1123–1130

    Article  Google Scholar 

  25. Liu Z, Zhang Z, Wu Q, Wang Y (2015) Enhancing person re-identification by integrating gait biometric. Neurocomputing 168:1144–1156

    Article  Google Scholar 

  26. Makihara Y, Mannami H, Tsuji A, Hossain MA, Sugiura K, Mori A, Yagi Y (2012) The ou-isir gait database comprising the treadmill dataset. IPSJ Trans Comput Vis Appl 4:53–62

    Article  Google Scholar 

  27. Medikonda J, Madasu H, Ketan PB (2017) Information set based features for the speed invariant gait recognition. IET Biometr 7(3):269–277

    Article  Google Scholar 

  28. Mogan JN, Lee CP, Lim KM, Tan AW (2017) Gait recognition using binarized statistical image features and histograms of oriented gradients. In: 2017 International conference on robotics, automation and sciences (ICORAS). IEEE, pp 1–6

  29. Rida I, Almaadeed S, Bouridane A (2016) Gait recognition based on modified phase-only correlation. SIViP 10(3):463–470

    Article  Google Scholar 

  30. Roy A, Sural S, Mukherjee J (2012) Gait recognition using pose kinematics and pose energy image. Signal Process 92(3):780–792

    Article  Google Scholar 

  31. Satpathy A, Jiang X, Eng HL (2014) Lbp-based edge-texture features for object recognition. IEEE Trans Image Process 23(5):1953–1964

    Article  MathSciNet  Google Scholar 

  32. Schuldt C, Laptev I, Caputo B (2004) Recognizing human actions: a local svm approach. In: ICPR 2004. Proceedings of the 17th international conference on pattern recognition, vol 3. IEEE, pp 32–36

  33. Semwal VB, Raj M, Nandi GC (2015) Biometric gait identification based on a multilayer perceptron. Robot Auton Syst 65:65–75

    Article  Google Scholar 

  34. Sharifi M, Fathy M, Mahmoudi MT (2002) A classified and comparative study of edge detection algorithms. In: 2002. Proceedings. International conference on information technology: coding and computing. IEEE, pp 117–120

  35. Sivapalan S, Chen D, Denman S, Sridharan S, Fookes C (2013) Histogram of weighted local directions for gait recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp 125–130

  36. Vishwakarma DK, Singh K (2017) Human activity recognition based on spatial distribution of gradients at sublevels of average energy silhouette images. IEEE Trans Cogn Develop Syst 9(4):316–327

    Article  Google Scholar 

  37. Vishwakarma DK, Kapoor R, Dhiman A (2016) A proposed unified framework for the recognition of human activity by exploiting the characteristics of action dynamics. Robot Auton Syst 77:25–38

    Article  Google Scholar 

  38. Wang C, Zhang J, Wang L, Pu J, Yuan X (2012) Human identification using temporal information preserving gait template. IEEE Trans Pattern Anal Mach Intell 34(11):2164–2176

    Article  Google Scholar 

  39. Wang L, Tan T, Hu W, Ning H, et al. (2003) Automatic gait recognition based on statistical shape analysis. IEEE Trans Image Process 12(9):1120–1131

    Article  MathSciNet  Google Scholar 

  40. Whytock T, Belyaev A, Robertson N (2012) Gei+ hog for action recognition. In: 4th UK computer vision student workshop (BMVC 2012 Student Workshop), Surrey

  41. Wu Z, Huang Y, Wang L, Wang X, Tan T (2017) A comprehensive study on cross-view gait based human identification with deep cnns. IEEE Trans Pattern Anal Mach Intell 2:209–226

    Article  Google Scholar 

  42. Yu S, Tan D, Tan T (2006) A framework for evaluating the effect of view angle, clothing and carrying condition on gait recognition. In: ICPR 2006. 18th International conference on pattern recognition, vol 4. IEEE, pp 441–444

  43. Zheng S (accessed July 27, 2017) CASIA Gait Database. http://www.sinobiometrics.com

  44. Zeng W, Wang C (2016) View-invariant gait recognition via deterministic learning. Neurocomputing 175:324–335

    Article  Google Scholar 

Download references

Acknowledgements

We thank to (1) The team behind Institute of Automation, Chinese Academy of Sciences (CASIA) for sharing the CASIA gait database [43], (2) Prof Yasushi Yagi, Osaka University Japan and his whole research group for providing, OU-ISIR D gait database [26], (3) Christian Schuldt and his team for sharing KTH video database [32], and (4) Ralph Gross and his team, Carnegie Mellon University for sharing CMU MoBo motion database [8]. This work is supported by Visvesvaraya Ph.D. Scheme, MeitY, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Anusha.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anusha, R., Jaidhar, C.D. Human gait recognition based on histogram of oriented gradients and Haralick texture descriptor. Multimed Tools Appl 79, 8213–8234 (2020). https://doi.org/10.1007/s11042-019-08469-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-019-08469-1

Keywords

Navigation