Skip to main content
Log in

FTSH: a framework for transition from square image processing to hexagonal image processing

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

This paper proposes a novel framework for transition from the ordinary square-pixel-based image processing (SIP) domain to the hexagonal-pixel-based (HIP) domain (FTSH). The conventional image acquisition and processing are based on square pixels. However, HIP can provide promising advantages in many respects, such as degrading the curse of data size and accordingly reducing the processing time. HIP did not achieve satisfactory attraction because all software, including libraries, methods and structures, as well as mathematical operations and methodologies developed to date, are aimed at SIP. In this study, we propose a framework containing the corresponding HIP equivalents of some basic SIP methods and operations. In addition, the results of these basic operations in both SIP and HIP areas are presented comparatively. Since there is no common and standardized framework or library for HIP, this study can be used by other researchers who wish to enter the HIP. Simulation results support the competitive performance of HIP, and this promising performance can be carried far beyond when properly handled and focused.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  1. Ahonen T, Hadid A, Pietikainen M (2004) Face recognition with local binary patterns. Proceedings of the 8th European Conference on Computer Vision: 469–481

  2. Bell SCM, Holroyd FC, Mason DC (1989) A digital geometry for hexagonal pixels. Image Vis Comput 7:194–204

    Article  Google Scholar 

  3. Burt PJ (1980) Tree and pyramid structures for coding hexagonally sampled binary images. Comput Graph Image Process 14:271–280

    Article  Google Scholar 

  4. Cevik N (2019) Face recognition by grey-level co-occurrence matrices in hexagonal digital image processing. Turkish Stud – Inform Technol Appl Sci 14(2):149–165

    Google Scholar 

  5. Cevik N, Cevik T (2018) DLGBD: a directional local gradient based descriptor for face recognition. Multimed Tools Appl 78:1–20. https://doi.org/10.1007/s11042-018-6967-4

    Article  Google Scholar 

  6. Cevik N, Cevik T (2019) Novel high-performance holistic descriptor for face retrieval. Pattern Anal Applic: 1–13. doi:https://doi.org/10.1007/s10044-019-00803-5

  7. Cevik T, Cevik N (2019) RIMFRA: rotation-invariant multi-spectral face retrieval approach by using orthogonal polynomials. Multimed Tools Appl 78:1–31. https://doi.org/10.1007/s11042-019-07816-6

    Article  Google Scholar 

  8. Cevik N, Cevik T, Gurhanli A (2019) A novel multispectral face descriptor using orthogonal Walsh codes. IET Image Process 13(7):1097–1104. https://doi.org/10.1049/iet-ipr.2018.6423

    Article  Google Scholar 

  9. Chakraborty S (2017) Satish Kumar Singh, pa-van Chakraborty, “local directional gradient pat-tern: a local descriptor for face recognition”. Multimed Tools Appl 76:1201–1216

    Article  Google Scholar 

  10. Curcio CA, Sloan KR, Packer O, Hendrickson AE, Kalina RE (1987) Distribution of cones in human and monkey retina: individual variability and radial asymmetry. Science 236(4801):579–582

    Article  Google Scholar 

  11. Dahmane M, Meunier J (2011) Emotion recognition using dynamic gridbased HoG features. IEEE Int Conf Autom Face Gesture Recognit Workshops (FG): 884–888

  12. Dan Z, Chen Y, Yang Z, Wu G (2014) An improved local binary pattern for texture classification. Optik 125:6320–6324

    Article  Google Scholar 

  13. Dubey SR (2017) Local directional relation pattern for unconstrained and robust face retrieval. arXiv:1709.09518 [cs.CV]

  14. Gao W, Cao B, Shan S, Chen X, Zhou D, Zhang X, Zhao D (2008) The CAS-PEAL large-scale Chinese face database and baseline evaluations. IEEE Trans Syst Man Cybernet (Part A) 38(1):149–161

    Article  Google Scholar 

  15. Gibson L, Lucas D (1982) Vectorization of raster images using hierarchical methods. Comput Graph Image Process 20:82–89

    Article  Google Scholar 

  16. Gibson L, Lucas D (1982) Spatial data processing using generalized balanced ternary. Proceedings of PRIP 82. IEEE Computer Society Conference on Pattern Recognition and Image Processing: 566–571

  17. Gibson L, Lucas D (1986) Pyramid algorithms for automated target recognition. Proceedings of the IEEE 1986 National Aerospace and Electronics Conference: 215–219

  18. Hales TC (2000) Cannonballs and honeycombs. Not Am Math Soc 47(4):440–449

    MathSciNet  MATH  Google Scholar 

  19. Hales TC (2001) The honeycomb conjecture. Discrete Comput Geometry 25:1–22

    Article  MathSciNet  Google Scholar 

  20. He X, Jia W (2005) Hexagonal structure for intelligent vision. 1st International Conference on Information and Communication Technologies: 52–64

  21. Heikkilä M, Pietikäinen M, Schmid C (2009) Description of interest regions with local binary patterns. Pattern Recogn 42(3):425–436

    Article  Google Scholar 

  22. Her I (1995) Geometric transforms on the hexagonal grid. IEEE Trans Image Process 4:1213–1222

    Article  Google Scholar 

  23. Her I, Yuan C-T (1994) Resampling on a Pseudohexagonal grid. CVGIP: Graph Models Image Process 56:336–347

    Google Scholar 

  24. Jabid T, Kabir MH, Chae O (2010) Robust facial expression recognition based on local directional pattern. ETRI J 32(5):784–794

    Article  Google Scholar 

  25. Jafri R, Arabnia HR (2009) A survey of face recognition techniques. J Inform Process Syst 5(2):41–68

    Article  Google Scholar 

  26. Knuth DE (1969) The art of computer programming: Seminumerical Algorithms, Vol. 2. Addison Wesley

  27. Lei Z, Liao S, Pietikäinen M, Li SZ (2011) Face recognition by exploring information jointly in space, scale and orientation. IEEE Trans Image Process 20(1):247–256

    Article  MathSciNet  Google Scholar 

  28. Libor S (2000) Face recognition data

  29. Lucas D (1979) A multiplication in N-space. IEEE Trans Image Process 74:1–8

    MathSciNet  MATH  Google Scholar 

  30. Lucas D, Gibson L (1991) Template decomposition and inversion over hexagonally sampled images. Image Algebra Morphol Image Process II 1568:257–263

    Google Scholar 

  31. Lyons MJ, Akemastu S, Kamachi M, Gyoba J (1998) Coding facial expressions with gabor wavelets. 3rd IEEE International Conference on Automatic Face and Gesture Recognition: 200-205

  32. Mahesh B, Pearlman W (1989) Image coding on a hexagonal pyramid with noise spectrum shaping. Proc Int Soc Optic Eng 1199:764–774

    Google Scholar 

  33. Melendez J, Garcia MA, Puig D (2008) Efficient distance-based per-pixel texture classification with Gabor wavelet filters. Pattern Anal Appl 11(3):365–372

    Article  MathSciNet  Google Scholar 

  34. Mersereau RM (1979) The processing of hexagonally sampled two-dimensional signals. Proc IEEE 67:930–949

    Article  Google Scholar 

  35. Middleton L, Sivaswamy J (2005) Hexagonal image processing, a practical approach. Springer

  36. Miller E (1999) Alternative Tilings for improved surface area estimates by local counting algorithms. Comput Vis Image Underst 74(3):193–211

    Article  Google Scholar 

  37. Nel A (1989) Hexagonal image processing. COMSIG, IEEE

  38. Overington I (1992) Computer vision: a unified, biologically-inspired approach. Elsevier Science Publishing Company

  39. Pirenne MH (1967) Vision and the eye, 2nd edn. Chapman and Hall, London

    Google Scholar 

  40. Qi X, Xiao R, Li C-G, Qiao Y, Guo J, Tang X (2014) Pairwise rotation invariant co-occurrence local binary pattern. IEEE Trans Pattern Anal Mach Intell 36(11):2199–2213

    Article  Google Scholar 

  41. Ramirez Rivera A, Castillo R, Chae O (2013) Local directional number pattern for face analysis: face and expression recognition. IEEE Trans Image Process 22(5):1740–1752

    Article  MathSciNet  Google Scholar 

  42. Rivera AR, Chae O (2015) Spatiotemporal directional number transitional graph for dynamic texture recognition. IEEE Trans Pattern Anal Mach Intell 37(10):2146–2152

    Article  Google Scholar 

  43. Rosenfeld A (1970) Connectivity in digital pictures. J Assoc Comput Mach 17(1):146–160

    Article  MathSciNet  Google Scholar 

  44. Rosenfeld A, Pfaltz JL (1968) Distance functions on digital pictures. Pattern Recogn 1:33–61

    Article  MathSciNet  Google Scholar 

  45. Sarasota FL (1994) Proceedings of 2nd IEEE workshop on applications of computer vision

  46. Serra J (1986) Introduction to mathematical morphology. Computer Vision, Graphics Image Process 35:283–305

    Article  Google Scholar 

  47. Sheridan P, Hintz T, Alexander D (2000) Pseudo-invariant image transforms on a hexagonal lattice. Image Vis Comput 18:907–917

    Article  Google Scholar 

  48. Snyder W, Qi H, Sander W (1999) A coordinate system for hexagonal pixels. Proc Int Soc Optic Eng 3661:716–727

    Google Scholar 

  49. Staunton R (1999) Hexagonal sampling in image processing. Adv Imaging Electro Phys 107:231–307

    Article  Google Scholar 

  50. Stevenson RL, Arce GR (1985) Binary display of hexagonally sampled continuous-tone images. J Opt Soc Am A 2:1009–1013

    Article  Google Scholar 

  51. Tan X, Triggs B (2010) Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Trans Image Process 19(6):1635–1650

    Article  MathSciNet  Google Scholar 

  52. Viola P, Jones MJ (2004) Robust real-time face detection. Int J Comput Vis 57:137–154

    Article  Google Scholar 

  53. Watson AB, Ahumada AJ (1989) A hexagonal orthogonal-oriented pyramid as a model of image representation in the visual cortex. IEEE Trans Biomed Eng BME-36:97–106

    Article  Google Scholar 

  54. Wuthrich CA, Stucki P (1991) An algorithmic comparison between squareand hexagonal-based grids. CVGIP: Graph Models Image Process 53:324–339

    Google Scholar 

  55. Yang S, Bhanu B (2011) Facial expression recognition using emotion avatar image. IEEE Int. Conf Autom Face Gesture Recognit Workshops (FG): 866–871

  56. Yang B, Chen S (2013) A comparative study on local binary pattern (LBP) based face recognition: LBP histogram versus LBP image. Neurocomputing 120:365–379

    Article  Google Scholar 

  57. Yin QB, Kim JN (2008) Rotation-invariant texture classification using circular Gabor wavelets based local and global features. Chin J Electron 17(4):646–648

    Google Scholar 

  58. Zhang WC, Shan SG, Gao W, Zhang HM (2005) Local gabor binary pattern histogram sequence (lgbphs): a novel non-statistical model for face representation and recognition. Proceedings of the 10th IEEE International Conference and Computer Vision: 786–791

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taner Cevik.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cevik, T., Fettahoglu, M., Cevik, N. et al. FTSH: a framework for transition from square image processing to hexagonal image processing. Multimed Tools Appl 79, 7021–7048 (2020). https://doi.org/10.1007/s11042-019-08487-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-019-08487-z

Keywords

Navigation