Abstract
Motion Estimation (ME) is one of the most computationally demanding parts of video encoders. The Test Zone (TZ) search is a popular fast ME algorithm, which is recommended for High-Efficiency Video Coding (HEVC). While the TZ search achieves an excellent coding efficiency, it is not a favorable choice for hardware implementations due to 1) a relatively high computational complexity, 2) inducing data dependency among the neighboring blocks, which complicates hardware implementations and parallel processing in software implementations, and 3) lack of computational adjustability, which is required for video encoding in power-constrained devices. This paper diagnoses the cause of these issues to be in the multiple starting search points of the TZ search algorithm. Accordingly, a method is proposed to find a single reliable starting point that replaces the first step of the TZ search algorithm. To do so, both current and reference frames are analyzed using a complex wavelet transform, and similar salient points are identified among the two frames. Then a light-weight process is used to match these points to find a single reliable starting point. The reliability of this point leads to reduced zonal refinement range with negligible cost in compression efficiency. Since adjusting the refinement range can be used as an effective way for adjusting the complexity, this results in a computationally scalable ME algorithm, named FMECWT. In contrast to the existing methods, FMECWT does not rely on neighboring blocks, which eliminates the inherent data dependency of TZ search. Experimental results show that FMECWT achieves ~35% to ~85% ME time reduction compared to TZ search, with only 0.1% to 1.7% increase in BD-Rate.
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-019-08593-y/MediaObjects/11042_2019_8593_Fig1_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-019-08593-y/MediaObjects/11042_2019_8593_Fig2_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-019-08593-y/MediaObjects/11042_2019_8593_Fig3_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-019-08593-y/MediaObjects/11042_2019_8593_Fig4_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-019-08593-y/MediaObjects/11042_2019_8593_Fig5_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-019-08593-y/MediaObjects/11042_2019_8593_Fig6_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-019-08593-y/MediaObjects/11042_2019_8593_Fig7_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-019-08593-y/MediaObjects/11042_2019_8593_Fig8_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-019-08593-y/MediaObjects/11042_2019_8593_Fig9_HTML.png)
Similar content being viewed by others
References
Sullivan GJ, Ohm J, Han W, Wiegand T (2012) Overview of the high efficiency video coding. IEEE Trans Circuits Syst Video Technol 22:1649–1668. https://doi.org/10.1109/TCSVT.2012.2221191
Chen J, Alshina E, Sullivan GJ, et al (2017) Algorithm description of joint exploration test model 7 (JEM 7). JVET-G1001-v1
Hosseini E, Pakdaman F, Hashemi MR, Ghanbari M (2018) A computationally scalable fast intra coding scheme for HEVC video encoder. Multimed Tools Appl:1–24. https://doi.org/10.1007/s11042-018-6713-y
Tsai S, Li C, Chen H et al (2013) A 1062Mpixels/s 8192x4320p high efficiency video coding (H.265) encoder chip. In: Symposium on VLSI circuits, pp 4–5
Fernández DG, Botella G, Del Barrio AA et al (2018) HEVC optimization based on human perception for real-time environments. Multimed Tools Appl:1–33. https://doi.org/10.1007/s11042-018-7033-y
Correa G, Assuncao PA, Agostini LV, Da Silva Cruz LA (2016) Pareto-based method for high efficiency video coding with limited encoding time. IEEE Trans Circuits Syst Video Technol 26:1734–1745. https://doi.org/10.1109/TCSVT.2015.2469533
Zhang J, Kwong STW, Zhao T, Ip HHS (2018) Complexity control in the HEVC intracoding for industrial video applications. IEEE Trans Ind Inf. https://doi.org/10.1109/TII.2018.2844214
Zhang J, Kwong S, Zhao T, Pan Z (2018) CTU-level complexity control for high efficiency video coding. IEEE Trans Multimed 20:29–44. https://doi.org/10.1109/TMM.2017.2723238
Penny W, Machado I, Porto M et al (2016) Pareto-based energy control for the HEVC encoder. In: 2016 IEEE international conference on image processing (ICIP). IEEE, pp 814–818
C. Rosewarne, Bross B, Naccari M, et al (2016) High efficiency video coding (HEVC) test model 16 (HM16) improved encoder description update 5. JCTVC-W1002
Jou S-Y, Chang S-J, Chang T-S (2015) Fast motion estimation algorithm and design for real time QFHD high efficiency video coding. IEEE Trans Circuits Syst Video Technol 25:1533–1544. https://doi.org/10.1109/TCSVT.2015.2389472
Wang C-C, Li G-L (2017) Hardware-friendly advanced motion vector prediction method and its architecture design for high efficiency video coding. Multimed Tools Appl 76:25285–25296. https://doi.org/10.1007/s11042-017-4500-9
Lin Y-K, Li D-W, Lin C-C et al (2008) A 242mW 10mm2 1080p H.264/AVC high-profile encoder chip. In: IEEE international solid-state circuits conference. IEEE, pp 314–615
Tung-Chien Chen T-C, Shao-Yi Chien S-Y, Yu-Wen Huang Y-W et al (2006) Analysis and architecture design of an HDTV720p 30 frames/s H.264/AVC encoder. IEEE Trans Circuits Syst Video Technol 16:673–688. https://doi.org/10.1109/TCSVT.2006.873163
Pakdaman F, Gabbouj M, Hashemi MR, Ghanbari M (2018) Fast motion estimation algorithm with efficient memory access for HEVC hardware encoders. In: 2018 7th European workshop on visual information processing (EUVIP). IEEE, pp 1–5
Tohidypour HR, Pourazad MT, Nasiopoulos P (2016) Probabilistic approach for predicting the size of coding units in the quad-tree structure of the quality and spatial scalable HEVC. IEEE Trans Multimed 18:182–195. https://doi.org/10.1109/TMM.2015.2510332
Lee T-K, Chan Y-L, Siu W-C (2017) Adaptive search range for HEVC motion estimation based on depth information. IEEE Trans Circuits Syst Video Technol 27:2216–2230. https://doi.org/10.1109/TCSVT.2016.2583979
Goncalves P, Porto M, Zatt B et al (2018) Octagonal-axis raster pattern for improved test zone search motion estimation. In: 2018 IEEE international conference on acoustics, speech and signal processing (ICASSP). IEEE, pp 1763–1767
Selesnick IW, Baraniuk RG, Kingsbury NG (2005) The dual-tree complex wavelet transform. IEEE Signal Process Mag 22:123–151
Pakdaman F, Hashemi M-R, Ghanbari M (2017) Fast and efficient intra mode decision for HEVC, based on dual-tree complex wavelet. Multimed Tools Appl 76:9891–9906. https://doi.org/10.1007/s11042-016-3584-y
Bjontegaard G (2001) Calculation of average PSNR differences between RD curves. In: 13th video coding expert gr meet
Yan C, Zhang Y, Xu J et al (2014) A highly parallel framework for HEVC coding unit partitioning tree decision on many-core processors. IEEE Signal Process Lett 21:573–576. https://doi.org/10.1109/LSP.2014.2310494
Zhu C, Lin X, Chau LP (2002) Hexagon-based search pattern for fast block motion estimation. IEEE Trans Circuits Syst Video Technol 12:349–355. https://doi.org/10.1109/TCSVT.2002.1003474
Purnachand N, Alves LN, Navarro A (2012) Fast motion estimation algorithm for HEVC. In: IEEE international conference on consumer electronics, Berlin, pp 34–37
Singh K, Ahamed SR (2018) Computationally efficient motion estimation algorithm for HEVC. J Signal Process Syst 90:1713–1727. https://doi.org/10.1007/s11265-017-1321-z
Li X, Wang R, Cui X, Wang W (2015) Context-adaptive fast motion estimation of HEVC. In: IEEE international symposium on circuits and systems, pp 2784–2787
Elsabrouty M, Shalaby A, Mehdipour F et al (2016) Adaptive low-complexity motion estimation algorithm for high efficiency video coding encoder. IET Image Process 10:438–447. https://doi.org/10.1049/iet-ipr.2015.0666
Yang S-H, Yang H-J, Jiang J-Z (2014) Fast motion estimation for HEVC with directional search. Electron Lett 50:673–675. https://doi.org/10.1049/el.2014.0536
Goncalves P, Correa G, Porto M et al (2017) Multiple early-termination scheme for TZ search algorithm based on data mining and decision trees. In: 2017 IEEE 19th international workshop on multimedia signal processing (MMSP). IEEE, pp 1–6
Hu N, Yang E (2014) Fast motion estimation based on confidence interval. IEEE Trans Circuits Syst Video Technol 24:1310–1322
Kim KY, Kim HY, Choi JS, Park GH (2014) MC complexity reduction for generalized P and B pictures in HEVC. IEEE Trans Circuits Syst Video Technol 24:1723–1728. https://doi.org/10.1109/TCSVT.2014.2308651
Lee J (2017) Energy efficient processing of motion estimation for embedded multimedia systems. Multimed Tools Appl 76:24749–24765. https://doi.org/10.1007/s11042-017-4645-6
Kalali E, Mert AC, Hamzaoglu I (2016) A computation and energy reduction technique for HEVC discrete cosine transform. IEEE Trans Consum Electron 62:166–174. https://doi.org/10.1109/TCE.2016.7514716
Chen J, Wang B, Liao J, Cai C (2018) Fast 3D-HEVC inter mode decision algorithm based on the texture correlation of viewpoints. Multimed Tools Appl:1–15. https://doi.org/10.1007/s11042-018-6832-5
Xiong J, Li H, Wu Q, Meng F (2014) A fast HEVC inter CU selection method based on pyramid motion divergence. IEEE Trans Multimed 16:559–564. https://doi.org/10.1109/TMM.2013.2291958
Shen L, Zhang Z, Liu Z (2014) Adaptive inter-mode decision for HEVC jointly utilizing inter-level and spatiotemporal correlations. IEEE Trans Circuits Syst Video Technol 24:1709–1722. https://doi.org/10.1109/TCSVT.2014.2313892
Correa G, Assuncao P, Agostini L, Da Silva Cruz LA (2013) Coding tree depth estimation for complexity reduction of HEVC. Data Compress Conf Proc:43–52. https://doi.org/10.1109/DCC.2013.12
Correa G, Assuncao P, Agostini L, da Silva Cruz LA (2016) Complexity scalability for real-time HEVC encoders. J Real-Time Image Process 12:107–122. https://doi.org/10.1007/s11554-013-0392-8
Zhang Y, Huang S, Li H, Chao H (2013) An optimally complexity scalable multi-mode decision algorithm for HEVC. In: 2013 IEEE international conference on image processing. IEEE, pp 2000–2004
Magarey J, Kingsbury N (1998) Motion estimation using a complex-valued wavelet transform. IEEE Trans Signal Process 46:1069–1084. https://doi.org/10.1109/78.668557
Dai W, Au OC, Li S et al (2012) Adaptive search range algorithm based on Cauchy distribution. In: IEEE visual communications and image processing, pp 1–5
Du L, Liu Z, Ikenaga T, Wang D (2015) Linear adaptive search range model for uni-prediction and motion analysis for bi-prediction in HEVC. In: International conference on image processing, pp 3671–3675
Lee T, Chan Y, Siu W (2016) Adaptive search range by neighbouring depth intensity weighted sum for HEVC texture coding. Electron Lett:3–4
Da Chien W, Liao KY, Yang JF (2014) Enhanced AMVP mechanism based adaptive motion search range decision algorithm for fast HEVC coding. In: International conference on image processing, pp 3696–3699
Liu Q, Liu L, Hao L, Peng T (2018) Fast motion estimation algorithm for high efficient video coding. In: 2018 IEEE 4th international conference on computer and communications (ICCC). IEEE, pp 6–10
(2016) Intel 64 and IA-32 architectures optimization reference manual
(2012) Methodology for the subjective assessment of the quality of television pictures. Int Telecommun Union Recomm ITU-R BT500–13. https://doi.org/http://www.itu.int/rec/R-REC-BT.500/en
Li Z, Aaron A, Katsavounidis I, et al Toward a practical perceptual video quality metric. http://techblog.netflix.com/2016/06/toward-practical-perceptual-video.html. Accessed 20 Oct 2019
Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13:600–612. https://doi.org/10.1109/TIP.2003.819861
Rabaey J (2009) Low power design essentials, 1st edn. Springer US
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Pakdaman, F., Hashemi, M.R. & Ghanbari, M. A low complexity and computationally scalable fast motion estimation algorithm for HEVC. Multimed Tools Appl 79, 11639–11666 (2020). https://doi.org/10.1007/s11042-019-08593-y
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11042-019-08593-y