Skip to main content
Log in

Smartphone based iris recognition through optimized textural representation

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Mobile devices have become ubiquitous nowadays and so is the need of secure access to these devices. Iris being the most reliable and hard-to-tamper biometric trait, can serve the aforementioned purpose. Iris recognition on mobile phones has become a significant and challenging task for the research community. With advancement in technology, it has now become feasible to use mobile devices’ in-built cameras to unlock the device through the user’s iris. This paper presents a convenient and efficient approach: optimal bit-transition codes (OBTC), for representing mobile iris images in a more distinctive manner. The approach is derived from the texture analysis property of 2D Gabor filters. Optimization of Gabor parameters is performed for iris images from two challenging mobile iris databases: MICHE I (which comprises of eye images acquired from three different smartphones: iPhone5, Galaxy S4 and Galaxy Tab2) and VISOB (which contains eye images acquired from iPhone5S, Samsung Note 4 and Oppo N1). After filtering, the image responses are converted to binary numbers and stored in concatenated vectors. Later, the concatenated vectors produce binary strings across the direction of concatenation and number of bit-transitions in these binary strings are encoded to form the complete feature vectors. A capacious experimentation is performed on the challenging MICHE I and VISOB iris databases. Comparison of the proposed approach with several state-of-the-art approaches clearly shows its expediency. More importantly, the proposed iris recognition approach performs at par with a commercial iris matcher, named VeriEye, which proves its usefulness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abate AF, Barra S, Gallo L, Narducci F (2017) Kurtosis and skewness at pixel level as input for SOM networks to iris recognition on mobile devices. Pattern Recognit Lett 91:37–43

    Article  Google Scholar 

  2. Ahuja K, Islam R, Barbhuiya FA, Dey K (2017) Convolutional neural networks for ocular smartphone-based biometrics. Pattern Recogn Lett 91:17–26

    Article  Google Scholar 

  3. Barra S, Casanova A, Narducci F, Ricciardi S (2015) Ubiquitous iris recognition by means of mobile devices. Pattern Recognit Lett 57:66–73

    Article  Google Scholar 

  4. Bansal A, Agarwal R, Sharma RK (2016) Statistical feature extraction based iris recognition system. Sādhanā 41(5):507–518

    Article  MathSciNet  Google Scholar 

  5. Bowyer KW, Hollingsworth K, Flynn PJ (2008) Image understanding for iris biometrics: a survey. Comput Vis Image Underst 110(2):281–307

    Article  Google Scholar 

  6. Daugman JG (1993) High confidence visual recognition of persons by a test of statistical independence. IEEE Trans Pattern Anal Mach Intell 15(11):1148–1161

    Article  Google Scholar 

  7. Daugman J (2003) The importance of being random: statistical principles of iris recognition. Pattern Recognit 36(2):279–291

    Article  Google Scholar 

  8. De Marsico M, Nappi M, Riccio D, Wechsler H (2015) Mobile Iris Challenge Evaluation (MICHE)-I, biometric iris dataset and protocols. Pattern Recognit Lett 57:17–23

    Article  Google Scholar 

  9. De Marsico M, Nappi M, Proença H (2017) Results from MICHE II – Mobile Iris CHallenge Evaluation II. Pattern Recognit Lett 91:3–10

    Article  Google Scholar 

  10. De Marsico M, Nappi M, Narducci F, Proença H (2018) Insights into the results of MICHE I - Mobile Iris CHallenge Evaluation. Pattern Recognit 74:286–304

    Article  Google Scholar 

  11. Elrefaei LA, Hamid DH, Bayazed AA, Bushnak SS, Maasher SY (2017) Developing Iris recognition system for smartphone security. Multimed Tools Appl, 1–25

  12. Galdi C, Dugelay JL (2017) FIRE: fast Iris REcognition on mobile phones by combining colour and texture features. Pattern Recognit Lett 91:44–51

    Article  Google Scholar 

  13. Galdi C, Nappi M, Dugelay JL (2016) Multimodal authentication on smartphones: combining iris and sensor recognition for a double check of user identity. Pattern Recognit Lett 82:144–153

    Article  Google Scholar 

  14. Haindl M, Krupicka M (2014) Accurate detection of non-iris occlusions. In: 2014 Tenth int conf signal-image technol internet-based syst, pp 49–56

  15. Haindl M, Krupicka M (2015) Unsupervised detection of non-iris occlusions. Pattern Recognit Lett 57:60–65

    Article  Google Scholar 

  16. Jain AK, Ross A, Prabhakar S (2004) An introduction to biometric recognition. IEEE Trans Circuits Syst Video Technol 14(1):4–20

    Article  Google Scholar 

  17. Jamaludin S, Zainal N, Zaki WMDW (2018) Sub-iris technique for non-ideal iris recognition. Arab J Sci Eng 43(12):7219–7228

    Article  Google Scholar 

  18. Jillela RR, Ross A (2015) Segmenting iris images in the visible spectrum with applications in mobile biometrics. Pattern Recognit Lett 57:4–16

    Article  Google Scholar 

  19. Kaur B, Singh S, Kumar J (2018) Iris recognition using Zernike moments and polar harmonic transforms. Arab J Sci Eng 43(12):7209–7218

    Article  Google Scholar 

  20. Kong WK, Zhang D, Li W (2003) Palmprint feature extraction using 2-D Gabor filters. Pattern Recognit 36(10):2339–2347

    Article  Google Scholar 

  21. Kumar A, Pang GK (2002) Defect detection in textured materials using Gabor filters. IEEE Trans Ind Appl 38(2):425–440

    Article  Google Scholar 

  22. Masek L (2003) Recognition of human iris patterns for biometric identification. Ph.D. thesis University of Western Australia

  23. Masek L, Kovesi P (2003) MATLAB source code for a biometric identification system based on Iris patterns. http://www.peterkovesi.com/studentprojects/libor/sourcecode.html

  24. Miyazawa K, Ito K, Aoki T, Kobayashi K, Nakajima H (2008) An effective approach for Iris recognition using phase-based image matching. IEEE Trans Pattern Anal Mach Intell 30(10):1741–1756

    Article  Google Scholar 

  25. Monro DM, Rakshit S, Zhang D (2007) DCT-based Iris recognition. IEEE Trans Pattern Anal Mach Intell 29(4):586–595

    Article  Google Scholar 

  26. Neurotechnology: VeriEye SDK. https://www.neurotechnology.com/verieye.html

  27. Poornima S, Subramanian S (2014) Unconstrained iris authentication through fusion of RGB channel information. Int J Pattern Recognit Artif Intell 28 (5):1456010–1–1456010–18

    Article  Google Scholar 

  28. Proença H, Alexandre LA (2005) UBIRIS: a noisy iris image database. In: Fabio R, Sergio V (eds) Image anal. process. – ICIAP 2005. Lect. Notes Comput. Sci, vol 3617. Springer, Berlin, pp 970–977

  29. Proença H, Alexandre LA (2007) The NICE.I: noisy Iris challenge evaluation - Part I. In: IEEE Conf. biometrics theory, appl. syst. BTAS’07, pp 1–4

  30. Proença H, Filipe S, Santos R, Oliveira J, Alexandre LA (2010) The UBIRIS. v2: a database of visible wavelength iris images captured. IEEE Trans Pattern Anal Mach Intell 32(8):1529–1535

    Article  Google Scholar 

  31. Radman A, Jumari K, Zainal N (2014) Iris segmentation in visible wavelength images using circular Gabor filters and optimization. Arab J Sci Eng 39(4):3039–3049

    Article  Google Scholar 

  32. Radman A, Zainal N, Suandi SA (2017) Automated segmentation of iris images acquired in an unconstrained environment using HOG-SVM and GrowCut. Digit Signal Process 64:60–70

    Article  MathSciNet  Google Scholar 

  33. Raja KB, Raghavendra R, Venkatesh S, Busch C (2017) Multi-patch deep sparse histograms for iris recognition in visible spectrum using collaborative subspace for robust verification. Pattern Recognit Lett 91:27–36

    Article  Google Scholar 

  34. Rattani A, Derakhshani R, Saripalle SK, Gottemukkula V (2016) ICIP 2016 competition on mobile ocular biometric recognition. In: IEEE International conference on image processing (ICIP) 2016, challenge session on mobile ocular biometric recognition. http://sce2.umkc.edu/cibit/dataset.html

  35. Subban R, Susitha N, Mankame DP (2018) Efficient Iris recognition using haralick features based extraction and fuzzy particle swarm optimization. Clust Comput 21(1):79–90

    Article  Google Scholar 

  36. Viola P, Jones M (2001) Rapid object detection using a boosted cascade of simple features. In: Proc. 2001 IEEE comput. soc. conf. comput. vis. pattern recognition, CVPR., pp 511–518

  37. Viola P, Jones M (2004) Robust real-time face detection. Int J Comput Vis 57(2):137–154

    Article  Google Scholar 

  38. Vyas R, Kanumuri T, Sheoran G (2016) Iris recognition using 2-D Gabor filter and XOR-SUM code. In: 2016 1st India Int. conf. inf. process., pp 1–5

  39. Vyas R, Kanumuri T, Sheoran G (2019) Cross spectral iris recognition for surveillance based applications. Multimed Tools Appl 78(5):5681–5699

    Article  Google Scholar 

  40. Wildes R (1997) Iris recognition: an emerging biometric technology. Proc IEEE 85(9):1348–1363

    Article  Google Scholar 

  41. Zhao Z, Kumar A (2015) An accurate iris segmentation framework under relaxed imaging constraints using total variation model. In: IEEE Int. conf. comput. vis., pp 3828–3836

Download references

Acknowledgements

The authors would like to thank Biometric and Image Processing Lab (BIPLab) at University of Salerno, Fisciano, Italy and Computational Intelligence and Bio-Identification Technologies Lab (CIBIT), University of Missouri-Kansas City, for providing access to their mobile iris databases.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ritesh Vyas.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vyas, R., Kanumuri, T., Sheoran, G. et al. Smartphone based iris recognition through optimized textural representation. Multimed Tools Appl 79, 14127–14146 (2020). https://doi.org/10.1007/s11042-019-08598-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-019-08598-7

Keywords

Navigation