Skip to main content
Log in

Automatic segmentation of dermoscopy images using saliency combined with adaptive thresholding based on wavelet transform

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Segmentation is the essential requirement in automated computer-aided diagnosis (CAD) of skin diseases. In this paper, we propose an unsupervised skin lesion segmentation method to challenge the difficulties existing in the dermoscopy images such as low contrast, border indistinct, and skin lesion is close to the boundary. The proposed method combines the enhanced fusion saliency with adaptive thresholding based on wavelet transform to get the lesion regions. Firstly, a fusion saliency map increases the contract of the skin lesion and healthy skin, and then an adaptive thresholding method based on wavelet transform is used to obtain more accurate lesion regions. We compare the proposed method with seven state-of-the-art approaches using a series of evaluation metrics on both PH2 and ISBI2016 datasets. The results demonstrate the effectiveness of the proposed method superior to the state-of-the-art approaches in accordance with quantitative results and visual effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abuzaghleh O, Barkana BD, Faezipour M (2015) Noninvasive real-time automated skin lesion analysis system for melanoma early detection and prevention. IEEE J Translational Eng Health Med 3:1–12

    Google Scholar 

  2. Ahn E, Bi L, Jung YH, Kim J, Li C, Fulham M, Feng DD (2015) Automated saliency-based lesion segmentation in dermoscopic images. In: 2015 37th annual international conference of the IEEE engineering in medicine and biology society (EMBC), pp 3009–3012

  3. Ahn E, Kim J, Bi L, Al Kumar, Li C, Fulham M, Feng DD (2017) Saliency-based lesion segmentation via background detection in dermoscopic images. IEEE J Biomed Health Inf 21(6):1685–1693

    Google Scholar 

  4. Alcón JF, Ciuhu C, Ten Kate W, Heinrich A, Uzunbajakava N, Krekels G, Siem D, De Haan G (2009) Automatic imaging system with decision support for inspection of pigmented skin lesions and melanoma diagnosis. IEEE J Sel Top Sign Process 3(1):14–25

    Google Scholar 

  5. Almasni MA, Alantari MA, Choi MT, Han SM, Kim TS (2018) Skin lesion segmentation in dermoscopy images via deep full resolution convolutional networks. Comput Methods Prog Biomed 162:221–231

    Google Scholar 

  6. Basalamah S (2012) Histogram based circle detection. Int J Comput Sci Netw Secur 12(8):40–43

    Google Scholar 

  7. Bernard WS, Christopher PW (2014) World cancer report 2014. World Health Organization

  8. Borji A, Frintrop S, Sihite DN, Itti L (2012) Adaptive object tracking by learning background context. In: IEEE computer society conference on computer vision and pattern recognition workshops, pp 23–30

  9. Chen X, Li Q, Song Y, Jin X, Zhao Q (2012) Supervised geodesic propagation for semantic label transfer. In: European conference on computer vision, pp 553–565

  10. Cheng MM, Mitra NJ, Huang X, Torr P HS, Hu SM (2015) Global contrast based salient region detection. IEEE Trans Pattern Anal Mach Intell 37(3):569–582

    Google Scholar 

  11. Emre Celebi M, Kingravi HA, Iyatomi H, Alp Aslandogan Y, Stoecker WV (2008) Border detection in dermoscopy images using statistical region merging. Skin Res Technol 14(3):347–353

    Google Scholar 

  12. Fan H, Xie F, Li Y, Jiang Z, Liu J (2017) Automatic segmentation of dermoscopy images using saliency combined with Otsu threshold. Comput Biol Med 85:75–85

    Google Scholar 

  13. Garnavi R, Aldeen M, Celebi ME, Varigos G, Finch S (2011) Border detection in dermoscopy images using hybrid thresholding on optimized color channels. Comput Med Imaging Graph 35(2):105–115

    Google Scholar 

  14. Guo M, Zhao Y, Zhang C, Chen Z (2014) Fast object detection based on selective visual attention. Neurocomputing 144:184–197

    Google Scholar 

  15. Gutman D, Codella NCF, Celebi E, Helba B, Marchetti M, Mishra N, Halpern A (2016) Skin lesion analysis toward melanoma detection: a challenge at the international symposium on biomedical imaging (ISBI) 2016, hosted by the international skin imaging collaboration (ISIC). arXiv:1605.01397

  16. Hu K, Gao X, Li F (2011) Detection of suspicious lesions by adaptive thresholding based on multiresolution analysis in mammograms. IEEE Trans Instrum Meas 60(2):462–472

    Google Scholar 

  17. Hu K, Zhang Z, Niu X, Zhang Y, Cao C, Xiao F, Gao X (2018) Retinal vessel segmentation of color fundus images using multiscale convolutional neural network with an improved cross-entropy loss function. Neurocomputing 309:179–191

  18. Huang LK, Wang MJ J (1995) Image thresholding by minimizing the measures of fuzziness. Pattern Recogn 28(1):41–51

    Google Scholar 

  19. Itti L, Koch C, Niebur E (1998) A model of saliency-based visual attention for rapid scene analysis. IEEE Trans Pattern Anal Mach Intell 20(11):1254–1259

    Google Scholar 

  20. Jahanifar M, Tajeddin NZ, Asl BM, Gooya A (2018) Supervised saliency map driven segmentation of lesions in dermoscopic images. IEEE J Biomed Health Inf 1–1. https://doi.org/10.1109/JBHI.2018.2839647

  21. Jin X, Sun X, Zhang X, Sun H, Xu R, Zhou X, Li X, Liu R (2018) Sun orientation estimation from a single image using short-cuts in DCNN. Opt Laser Technol 110:191–195

  22. Kasmi R, Mokrani K, Rader RK, Cole JG, Stoecker WV (2016) Biologically inspired skin lesion segmentation using a geodesic active contour technique. Skin Res Technol 22(2):208–222

    Google Scholar 

  23. Kittler J, Illingworth J (1986) Minimum error thresholding. Pattern Recogn 19(1):41–47

    Google Scholar 

  24. Lee T, Ng V, Gallagher R, Coldman A, McLean D (1997) Dullrazor®;: a software approach to hair removal from images. Comput Biol Med 27(6):533–543

    Google Scholar 

  25. Li Q, Chen X, Song Y, Zhang Y, Jin X, Zhao Q (2014) Geodesic propagation for semantic labeling. IEEE Trans Image Process 23(11):4812–4825

    MathSciNet  MATH  Google Scholar 

  26. Li C, Yuan Y, Cai W, Xia Y, Dagan Feng D (2015) Robust saliency detection via regularized random walks ranking. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2710–2717

  27. Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, van der Laak J AWM, Van Bram G, Sánchez C I (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88

    Google Scholar 

  28. Lu H, Li B, Zhu J, Li Y, Li Y, Xu X, He L, Li X, Li J, Serikawa S (2017) Wound intensity correction and segmentation with convolutional neural networks. Concurr Comput: Pract Exp 29(6):e3927

    Google Scholar 

  29. Lu H, Li Y, Chen M, Kim H, Serikawa S (2018) Brain intelligence: go beyond artificial intelligence. Mobile Netw Appl 23(2):368–375

    Google Scholar 

  30. Lu H, Li Y, Uemura T, Kim H, Serikawa S (2018) Low illumination underwater light field images reconstruction using deep convolutional neural networks. Futur Gener Comput Syst 82:142–148

  31. Mendonça T, Ferreira PM, Marques JS, Marcal A RS, Rozeira J (2013) PH 2-A dermoscopic image database for research and benchmarking. In: 2013 35th annual international conference of the IEEE engineering in medicine and biology society (EMBC), pp 5437–5440

  32. Navarro F, Escudero-Vinolo M, Bescos J (2018) Accurate segmentation and registration of skin lesion images to evaluate lesion change. IEEE J Biomed Health Inf 1–1. https://doi.org/10.1109/JBHI.2018.2825251

  33. Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9(1):62–66

    Google Scholar 

  34. Pathan S, Prabhu KG, Siddalingaswamy PC (2018) Techniques and algorithms for computer aided diagnosis of pigmented skin lesions—a review. Biomed Signal Process Control 39:237–262

    Google Scholar 

  35. Sezgin M, Sankur B (2004) Survey over image thresholding techniques and quantitative performance evaluation. J Electron Imaging 13(1):146–166

    Google Scholar 

  36. Silveira M, Nascimento JC, Marques JS, Marçal ARS, Mendonça T, Yamauchi S, Maeda J, Rozeira J (2009) Comparison of segmentation methods for melanoma diagnosis in dermoscopy images. IEEE J Sel Top Sign Process 3(1):35–45

    Google Scholar 

  37. Wang L, Adeli E, Wang Q, Shi Y, Suk HI (2016) Machine learning in medical imaging. In: 7th International workshop, MLMI 2016. Held in conjunction with MICCAI 2016, vol 10019

  38. Yan Q, Xu L, Shi J, Jia J (2013) Hierarchical saliency detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1155–1162

  39. Yang C, Zhang L, Lu H, Ruan X, Yang MH (2013) Saliency detection via graph-based manifold ranking. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3166–3173

  40. Yang X, Liu C, Wang Z, Yang J, Le Min H, Wang L, Cheng KT T (2017) Co-trained convolutional neural networks for automated detection of prostate cancer in multi-parametric MRI. Med Image Anal 42:212–227

    Google Scholar 

  41. Yüksel ME, Borlu M (2009) Accurate segmentation of dermoscopic images by image thresholding based on type-2 fuzzy logic. IEEE Trans Fuzzy Syst 17(4):976–982

    Google Scholar 

  42. Zeng B, Huang Q, El Saddik A, Li H, Jiang S, Fan X (2018) Advances in multimedia information processing-PCM 2017. In: 18th Pacific-rim conference on multimedia, vol 10736

  43. Zhang XP, Desai MD (2001) Segmentation of bright targets using wavelets and adaptive thresholding. IEEE Trans Image Process 10(7):1020–1030

    MATH  Google Scholar 

  44. Zhang Y, Gravina R, Lu H, Villari M, Fortino G (2018) PEA: parallel electrocardiogram-based authentication for smart healthcare systems. J Netw Comput Appl 117:10–16

    Google Scholar 

  45. Zhao Y, Zheng Y, Liu Y, Yang J, Zhao Y, Chen D, Wang Y (2017) Intensity and compactness enabled saliency estimation for leakage detection in diabetic and malarial retinopathy. IEEE Trans Med Imaging 36(1):51–63

    Google Scholar 

  46. Zhu W, Liang S, Wei Y, Sun J (2014) Saliency optimization from robust background detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2814–2821

  47. Zortea M, Flores E, Scharcanski J (2017) A simple weighted thresholding method for the segmentation of pigmented skin lesions in macroscopic images. Pattern Recogn 64:92–104

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grants 61802328 and 61771415, and the Cernet Innovation Project under Grant NGII20170702.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Hu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, K., Liu, S., Zhang, Y. et al. Automatic segmentation of dermoscopy images using saliency combined with adaptive thresholding based on wavelet transform. Multimed Tools Appl 79, 14625–14642 (2020). https://doi.org/10.1007/s11042-019-7160-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-019-7160-0

Keywords

Navigation