Skip to main content
Log in

Low-dimensional superpixel descriptor and its application in visual correspondence estimation

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Establishing local visual correspondence between video frames is an important and challenging problem in many vision based applications. Local keypoint detection and description based pixel-level matching is a typical way for visual correspondence estimation. Unlike traditional local keypoint descriptor based methods, this paper proposes a comprehensive yet low-dimensional local feature descriptor based on superpixels generated by over segmentation. The proposed local feature descriptor extracts shape feature, texture feature, and color feature from superpixels by orientated center-boundary distance (OCBD), gray-level co-occurrence matrix (GLCM), and saturation histogram (SHIST), respectively. The types of features are more comprehensive than existing descriptors which extract only one specific kind of feature. Experimental results on the widely used Middlebury optical flow dataset prove that the proposed superpixel descriptor achieves triple accuracy compared with the state-of-the-art ORB descriptor which has the same dimension of features with the proposed one. In addition, since the dimension of the proposed superpixel descriptor is low, it is convenient for matching and memory-efficient for hardware implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Achanta R, Shaji A, Smith K, Lucchi A, Fua P, Süsstrunk S (2012) SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans Pattern Anal Mach Intell 34(11):2274–2282

    Article  Google Scholar 

  2. Alahi A, Ortiz R, Vandergheynst P (2012) FREAK: fast retina keypoint. In: Proceedings of the international conference on computer vision and pattern recognition, pp 510–517

  3. Awad AI, Hassaballah M (2016) Image feature detectors and descriptors. Springer International Publishing, Cham

    Book  Google Scholar 

  4. Baker S, Scharstein D, Lewis JP, Roth S, Black MJ, Szeliski R (2011) A database and evaluation methodology for optical flow. Int J Comput Vis 92(1):1–31

    Article  Google Scholar 

  5. Bay H, Tuytelaars T, Van Gool L (2006) SURF: speeded up robust features. In: Proceedings of the European conference on computer vision, pp 404–417

  6. Beaudet P (1978) Rotationally invariant image operators. In: Proceedings of the international conference on pattern recognition, pp 579–583

  7. Calonder M, Lepetit V, Strecha C, Fua P (2010) BRIEF: binary robust independent elementary features. In: Proceedings of the European conference on computer vision, pp 778–792

  8. Chen J, Li Z, Huang B (2017) Linear spectral clustering superpixel. IEEE Trans Image Process 26(7):3317–3330

    Article  MathSciNet  MATH  Google Scholar 

  9. Comaniciu D, Meer P (2002) Mean shift: a robust approach toward feature space analysis. IEEE Trans Pattern Anal Mach Intell 24(5):603–619

    Article  Google Scholar 

  10. Daribo I, Florencio D, Cheung G (2014) Arbitrarily shaped motion prediction for depth video compression using arithmetic edge coding. IEEE Trans Image Process 23(11):4696–4708

    Article  MathSciNet  MATH  Google Scholar 

  11. Du S, Ikenaga T (2018) Low-dimensional superpixel descriptor for visual correspondence estimation in video. In: Proceedings of the international symposium on intelligent signal processing and communication systems, pp 287–291

  12. Fan B, Wang Z, Wu F (2015) Local image descriptor: modern approaches. Springer, Berlin

    Book  MATH  Google Scholar 

  13. Felzenszwalb P, Huttenlocher D (2004) Efficient graph-based image segmentation. Int J Comput Vis 59(2):167–181

    Article  Google Scholar 

  14. Fischler MA, Bolles RC (1981) Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun ACM 24(6):381–395

    Article  MathSciNet  Google Scholar 

  15. Guo Y, Zeng H, Mu Z-C, Zhang F (2010) Rotation-invariant DAISY descriptor for keypoint matching and its application in 3D reconstruction. In: Proceedings of the international conference on signal processing, pp 1198–1201

  16. Haralick RM, Shanmugam K, Dinstein I (1973) Textural features for image classification. IEEE Trans Syst Man Cybern 6:610–621

    Article  Google Scholar 

  17. Harris C, Stephens M (1988) A combined coer and edge detector. In: Proceedings of the Alvey vision conference, pp 147–151

  18. Horn BKP, Schunck BG (1981) Determining optical flow. Artif Intell 17 (1–3):185–203

    Article  Google Scholar 

  19. Hu W, Li W, Zhang X, Maybank S (2015) Single and multiple object tracking using a multi-feature joint sparse representation. IEEE Trans Pattern Anal Mach Intell 37(4):816–833

    Article  Google Scholar 

  20. Ke Y, Sukthankar R (2004) PCA-SIFT: a more distinctive representation for local image descriptors. In: Proceedings of the international conference on computer vision and pattern recognition, pp 506–513

  21. Khan N, McCane B, Mills S (2015) Better than SIFT? Mach Vision Appl 26(6):819–836

    Article  Google Scholar 

  22. Leutenegger S, Chli M, Siegwart R Y (2011) BRISK: binary robust invariant scalable keypoints. In: Proceedings of the international conference computer vision, pp 2548–2555

  23. Levinshtein A, Stere A, Kutulakos K, Fleet D, Dickinson S, Siddiqi K (2009) Turbopixels: fast superpixels using geometric flows. IEEE Trans Pattern Anal Mach Intell 31(12):2290–2297

    Article  Google Scholar 

  24. Liu C, Yuen J, Torralba A (2011) SIFT flow: dense correspondence across scenes and its applications. IEEE Trans Pattern Anal Mach Intell 33(5):978–994

    Article  Google Scholar 

  25. Liu Y, Nie L, Han L, Zhang L, Rosenblum D S (2015) Action2Activity: recognizing complex activities from sensor data. In: Proceedings of the international conference on artificial intelligence, pp 1617–1623

  26. Liu L, Cheng L, Liu Y, Jia Y, Rosenblum D S (2016) Recognizing complex activities by a probabilistic interval-based model. In: Proceedings of the AAAI conference on artificial intelligence, pp 1266–1272

  27. Liu Y, Nie L, Liu L, Rosenblum D S (2016) From action to activity: sensor-based activity recognition. Neurocomputing 181:108–115

    Article  Google Scholar 

  28. Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–110

    Article  Google Scholar 

  29. Miao Z, Jiang X (2013) Interest point detection using rank order LoG filter. Pattern Recognit 46:2890–2901

    Article  Google Scholar 

  30. Po L-M, Ma W-C (1996) A novel four-step search algorithm for fast block motion estimation. IEEE Trans Circuits Syst Video Technol 6(3):313–317

    Article  Google Scholar 

  31. Rosten E, Drummond T (2006) Machine learning for high-speed corner detection. In: Proceedings of the European conference on computer vision, pp 430–443

  32. Rosten E, Porter R, Drummond T (2010) Faster and better: a machine learning approach to corner detection. IEEE Trans Pattern Anal Mach Intell 32(1):105–119

    Article  Google Scholar 

  33. Rublee E, Rabaud V, Konolige K, Bradski G (2011) ORB: an efficient alternative to SIFT or SURF. In: Proceedings of the international conference computer vision, pp 2564–2571

  34. Schwartz WR, Pedrini H (2006) Textured image segmentation based on spatial dependence using a Markov random field model. In: Proceedings of the international conference on image processing, pp 2449–2452

  35. Shi J, Malik J (2000) Normalized cuts and image segmentation. IEEE Trans Pattern Anal Mach Intell 22(8):888–905

    Article  Google Scholar 

  36. Smith SM, Brady JM (1997) SUSAN: a new approach to low level image processing. Int J Comput Vis 23(1):45–78

    Article  Google Scholar 

  37. Soh L-K, Tsatsoulis C (1999) Texture analysis of SAR sea ice imagery using gray level co-occurrence matrices. IEEE Trans Geosci Remote Sens 37(2):780–795

    Article  Google Scholar 

  38. Yang P, Yang G (2016) Feature extraction using dual-tree complex wavelet transform and gray level co-occurrence matrix. Neurocomputing 197:212–220

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by KAKENHI (16K13006) and Waseda University Grant for Special Research Projects (2017B-261).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Songlin Du.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, S., Ikenaga, T. Low-dimensional superpixel descriptor and its application in visual correspondence estimation. Multimed Tools Appl 78, 19457–19472 (2019). https://doi.org/10.1007/s11042-019-7248-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-019-7248-6

Keywords

Navigation