Abstract
We present a methodology to develop a low-cost, low-bandwidth visual telepresence system using commodity depth sensors. To obtain a precise representation of the participants, we fuse together multiple views extracted using a deep background subtraction method. We build a proof-of-concept display composed of a video projector and a quadrangular pyramid made of acrylic, to demonstrate the visualization of a remote person without the need for head-mounted displays. Our system represents an attempt to democratize high-fidelity 3D telepresence using off-the-shelf components.








Similar content being viewed by others
References
Antonio S, Herrera R, Enriquez E (2013) Projection’s panel of models for touch screen. Int J Innovative Res Comput Commun Eng 1(9):2057–2064
Babaee M, Dinh DT, Rigoll G (2018) A deep convolutional neural network for video sequence background subtraction. Pattern Recogn 76:635–649
Badrinarayanan V, Kendall A, Cipolla R (2015) Segnet: a deep convolutional encoder-decoder architecture for image segmentation. arXiv:1511.00561
Beck S, Kunert A, Kulik A, Froehlich B (2013) Immersive group-to-group telepresence. IEEE Trans Vis Comput Graph 19(4):616–625
Bimber O, Raskar R (2005) Spatial augmented reality: merging real and virtual worlds. AK Peters/ CRC Press
Blanche PA, Bablumian A, Voorakaranam R, Christenson C, Lin W, Gu T, Flores D, Wang P, Hsieh WY, Kathaperumal M et al (2010) Holographic three-dimensional telepresence using large-area photorefractive polymer. Nature 468(7320):80
Brown DC (1971) Lens distortion for close-range photogrammetry. Photogramm Eng 37(8):855–866
Córdova-Esparza DM, Terven JR, Jiménez-Hernández H, Herrera-Navarro AM (2017) A multiple camera calibration and point cloud fusion tool for Kinect V2. Sci Comput Program 143:1–8
Dalvi AA, Siddavatam I, Dandekar NG, Patil AV (2015) 3D holographic projections using prism and hand gesture recognition. In: Proceedings of the 2015 international conference on advanced research in computer science engineering & technology (ICARCSET 2015). ACM, p 18
Dreshaj E (2015) Holosuite: an exploration into interactive holographic telepresence (Doctoral dissertation Massachusetts Institute of Technology)
Duane CB (1971) Close-range camera calibration. Photogramm Eng 37(8):855–866
Eigen D, Fergus R (2015) Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture. In: Proceedings of the IEEE international conference on computer vision, pp 2650–2658
Gohane MST, Longadge MRN (2014) 3D holograph projection-future of visual communication
Goyette N, Jodoin PM, Porikli F, Konrad J, Ishwar P (2012) Changedetection. net: a new change detection benchmark dataset. In: 2012 IEEE computer society conference on computer vision and pattern recognition workshops. IEEE, pp 1–8
Hofmann M, Tiefenbacher P, Rigoll G (2012) Background segmentation with feedback: the pixel-based adaptive segmenter. In: 2012 IEEE computer society conference on computer vision and pattern recognition workshops (CVPRW). IEEE, pp 38–43
Lee H, Ha G, Lee S, Cha J, Kim S (2016) A hologram based tele-existence platform for emotional exchange among a group of users in both real and virtual environments. In: Proceedings of the 22nd ACM conference on virtual reality software and technology. ACM, pp 295–296
Lee H, Ha G, Lee S, Kim S (2017) A mixed reality tele-presence platform to exchange emotion and sensory information based on MPEG-V standard. In: 2017 IEEE Virtual Reality (VR). IEEE, pp 349–350
Levenberg K (1944) A method for the solution of certain non-linear problems in least squares. Q Appl Math 2(2):164–168
Lu X, Shen J, Perugini S, Yang J (2015) An immersive telepresence system using rgb-d sensors and head mounted display. In: 2015 IEEE international symposium on multimedia (ISM). IEEE, pp 453–458
Maimone A, Fuchs H (2011) Encumbrance-free telepresence system with real-time 3D capture and display using commodity depth cameras. In: 2011 10th IEEE international symposium on mixed and augmented reality (ISMAR). IEEE, pp 137–146
Maimone A, Fuchs H (2012) Real-time volumetric 3D capture of room-sized scenes for telepresence. In: 3DTV-Conference: the true vision-capture, transmission and display of 3D video (3DTV-CON). IEEE, pp 1–4
Maimone A, Yang X, Dierk N, State A, Dou M, Fuchs H (2013) General-purpose telepresence with head-worn optical see-through displays and projector-based lighting. In: 2013 IEEE virtual reality (VR). IEEE, pp 23–26
Marquardt DW (1963) An algorithm for least-squares estimation of nonlinear parameters. J Soc Ind Appl Math 11(2):431–441
Mekuria R, Cesar P (2016) MP3DG-PCC, open source software framework for implementation and evaluation of point cloud compression. In: Proceedings of the 24th ACM international conference on multimedia. ACM, pp 1222–1226
Noor AK, Aras R (2015) Potential of multimodal and multiuser interaction with virtual holography. Adv Eng Softw 81:1–6
Orts-Escolano S, Rhemann C, Fanello S, Chang W, Kowdle A, Degtyarev Y, Kim D, Davidson PL, Khamis S, Dou M et al (2016) Holoportation: virtual 3d teleportation in real-time. In: Proceedings of the 29th annual symposium on user interface software and technology. ACM, pp 741–754
Pejsa T, Kantor J, Benko H, Ofek E, Wilson A (2016) Room2room: enabling life-size telepresence in a projected augmented reality environment. In: Proceedings of the 19th ACM conference on computer-supported cooperative work & social computing. ACM, pp 1716–1725
Prince SJ (2012) Computer vision: models, learning, and inference. Cambridge University Press, United Kingdom
Sajid H, Cheung SCS (2015) Background subtraction for static & moving camera. In: 2015 IEEE international conference on image processing (ICIP). IEEE, pp 4530–4534
Sakkos D, Liu H, Han J, Shao L (2017) End-to-end video background subtraction with 3d convolutional neural networks. Multimed Tools Appl, pp 1–19
Sedky M, Chibelushi CC, MONIRI M (2010) Image processing: object segmentation using full-spectrum matching of albedo derived from colour images
Schwarz S, Preda M, Baroncini V, Budagavi M, Cesar P, Chou PA, Llach J (2018) Emerging MPEG standards for point cloud compression. IEEE J Emerging Sel Top Circuits Syst 9(1):133–148
St-Charles PL, Bilodeau GA, Bergevin R (2015) A self-adjusting approach to change detection based on background word consensus. In: 2015 IEEE winter conference on applications of computer vision (WACV). IEEE, pp 990–997
St-Charles PL, Bilodeau GA, Bergevin R (2015) Subsense: a universal change detection method with local adaptive sensitivity. IEEE Trans Image Process 24(1):359–373
Statista: global business travel spending in 2015, 2016 and 2020 (in trillion U.S. dollars) (2017). https://www.statista.com/statistics/612244/global-business-travel-spending/ [Online; accessed 1-April-2018]
Stauffer C, Grimson WEL (1999) Adaptive background mixture models for real-time tracking. In: CVPR. IEEE, p 2246
Terven JR, Córdova-Esparza DM (2016) Kin2. A Kinect 2 toolbox for MATLAB. Sci Comput Program 130:97–106
Tiro D, Poturiović A, Buzadjija N (2015) The possibility of the hologram pyramid applying in the rapid prototyping. In: 2015 4th mediterranean conference on embedded computing (MECO). IEEE, pp 25–30
Towles H, Chen WC, Yang R, Kum SU, Kelshikar HFN, Mulligan J, Daniilidis K, Fuchs H, Hill CC, Mulligan NKJ et al (2002) 3D tele-collaboration over internet2. International Workshop on Immersive Telepresence, Juan Les Pins
Varadarajan S, Miller P, Zhou H (2015) Region-based mixture of gaussians modelling for foreground detection in dynamic scenes. Pattern Recogn 48(11):3488–3503
Wikimedia Commons. File:ABC Clarke predicts internet and PC.ogv — Wikimedia Commons{,} the free media repository (2018). https://commons.wikimedia.org/w/index.php?title=File:ABC_Clarke_predicts_internet_and_PC.ogv&oldid=292577968 [Online; accessed 1-April-2018]
Yoo H, Kim H (2014) On study of the volumetric display techniques. In: Interactive media arts proceedings
Acknowledgements
This work was supported by CONACYT through postdoctoral support number 291113. We also want to thank CIDESI for providing the facilities and assistance during the development of this project.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interests
The authors declare that there is no conflict of interest.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Córdova-Esparza, DM., Terven, J.R., Jiménez-Hernández, H. et al. Low-bandwidth 3D visual telepresence system. Multimed Tools Appl 78, 21273–21290 (2019). https://doi.org/10.1007/s11042-019-7464-0
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11042-019-7464-0