Skip to main content

Advertisement

Robust coding in a global subspace model and its collaboration with a local model for visual tracking

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

The sparse representation-based trackers has attracted much attention in the research community due to its superior performance in spite of its computational complexity. But the assumption that the coding residual follows either the Gaussian or the Laplacian distribution may not accurately describe the coding residual in practical visual tracking scenarios. To deal with such issues as well as to improve the performance of the visual tracking, a novel generative tracker is proposed in a Bayesian inference framework by introducing robust coding (RC) into the PCA reconstruction. Also, it is proposed to collaborate the global and local PCA subspace appearance models to enhance the tracking performance. Further, a robust RC distance is proposed to differentiate the candidate samples from the subspace, and a novel observation likelihood is defined based on both global and local RC distances. In addition, a robust occlusion map generation and a novel appearance model update mechanism are proposed. The quantitative and qualitative performance evaluations on the OTB-50 and VOT2016 dataset demonstrate that the proposed method performs favorably against several methods based on particle filter framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. There are 18 and 14 sequences with more than 500 frames, and 7 and 2 sequences with more than 1000 frames in OTB-50 and VOT2016 datasets, respectively.

  2. In this work, 2 × 2 cells and gradient orientations of 5 are used to extract the HOG feature and the local patch size of 4 × 4 pixels are considered for local model.

References

  1. Adam A, Rivlin E, Shimshoni I (2006) Robust fragments-based tracking using the integral histogram. In: Proc. of the IEEE conf. on comput. vision and pattern recogn. (CVPR), pp 798–805

  2. Babenko B, Yang M, Belongie S (2009) Visual tracking with online multiple instance learning. In: Proc. of the IEEE conf on comput vision and pattern recogn (CVPR), pp 983–990

  3. Black J, Ellis T, Rosin P, et al (2003) A novel method for video tracking performance evaluation. In: Proc. of the first joint IEEE int workshop on visual surveillance and performance evaluation of tracking and surveillance (VS-PETS-03, pp 125–132

  4. Black MJ, Jepson AD (1998) Eigentracking: robust matching and tracking of articulated objects using a view-based representation. Int J Comput Vision 26(1):63–84

    Article  Google Scholar 

  5. Grabner H, Leistner C, Bischof H (2008) Semi-supervised on-line boosting for robust tracking. In: Proc. of European conf. on comput vision (ECCV), pp 234–247

    Google Scholar 

  6. Jia X, Lu H, Yang M (2012) Visual tracking via adaptive structural local sparse appearance model. In: Proc. of the IEEE conf. comput. vision and pattern recogn. (CVPR), pp 1822–1829

  7. Jiang M, Wang H, Wang B (2012) Robust visual tracking based on maximum likelihood estimation. Int J Digital Content Tech Appl 6(22):467–474

    Article  Google Scholar 

  8. Jiang M-X, Li M, Wang H-Y (2013) Visual object tracking based on 2DPCA and ML. Math Probl Eng 2013:1–7

    MathSciNet  MATH  Google Scholar 

  9. Kristan M, Leonardis A, Matas J, Felsberg M, Pflugfelder R (2016) The visual object tracking VOT2016 challenge results. In: Proc. of European conf. on comput vision (ECCV), pp 1–45

  10. Lasserre JA, Bishop CM, Minka TP (2006) Principled hybrids of generative and discriminative models. In: Proc. of the IEEE conf on comput vision and pattern recogn (CVPR), pp 87–94

  11. Mei X (2011) Robust visual tracking and vehicle classification via sparse representation. IEEE Trans Pattern Anal Mach Intell (PAMI) 33(11):2259–2272

    Article  Google Scholar 

  12. Mei X, Ling H (2009) Robust visual tracking using L1 minimization. In: Proc. of the IEEE int. conf. comput. vision (ICCV), pp 1436–1443

  13. Ng AY, Jordan MI (2001) On discriminative vs. generative classifiers: a comparison of logistic regression and naive bayes. In: Proc. of advances in neural information process systems (NIPS), vol 14, pp 841–848

  14. Qu P (2014) Visual tracking with fragments-based PCA sparse representation. Int J Signal Image Process Pattern Recogn 7(2):23–34

    Article  Google Scholar 

  15. Ross DA, Lim J, Lin R-S, Yang M (2008) Incremental learning for robust visual tracking. Int J Comput Vision 77:125–141

    Article  Google Scholar 

  16. Shreyamsha Kumar BK, Swamy MNS, Omair Ahmad M (2015) Structural local DCT sparse appearance model for visual tracking. In: Proc of the IEEE int symp on circuits and systems (ISCAS), pp 1194–1197

  17. Shreyamsha Kumar BK, Swamy MNS, Omair Ahmad M (2016) Visual tracking via bilateral 2DPCA and robust coding. In: Proc. of the IEEE canadian conf on electrical and comput engineering (CCECE), pp 1–4

  18. Shreyamsha Kumar BK, Swamy MNS, Omair Ahmad M (2016) Weighted residual minimization in PCA subspace for visual tracking. In: Proc. of the IEEE int symp on circuits and systems (ISCAS), pp 986–989

  19. Smeulders AWM, Chu DM, Cucchiara R, Calderara S, Dehghan A, Shah M (2014) Visual tracking: an experimental survey. IEEE Trans Pattern Anal Mach Intell (PAMI) 36(7):1442–1468

    Article  Google Scholar 

  20. Sun M, Du D, Lu H, Zhang L (2015) Visual tracking with a structured local model. In: Proc. of the IEEE int conf on image process (ICIP), pp 2855–2859

  21. Wang D, Lu H (2012) Object tracking via 2DPCA and l1-regularization. Signal Process Letters 19(11):711–714

    Article  Google Scholar 

  22. Wang D, Lu H, Bo C (2015) Fast and robust object tracking via probability continuous outlier model. IEEE Trans Image Process 24(12):5166–5176

    Article  MathSciNet  Google Scholar 

  23. Wang D, Lu H, Bo C (2015) Visual tracking via weighted local cosine similarity. IEEE Trans Cybernetics 45(9):1838–1850

    Article  Google Scholar 

  24. Wang D, Lu H, Xiao Z, Yang M-H (2015) Inverse sparse tracker with a locally weighted distance metric. IEEE Trans Image Process 24(9):2646–2657

    Article  MathSciNet  Google Scholar 

  25. Wang D, Lu H, Yang M (2013) Online object tracking with sparse prototypes. IEEE Trans Image Process 22(1):314–325

    Article  MathSciNet  Google Scholar 

  26. Wang D, Lu H, Yang M-H (2016) Robust visual tracking via least soft-threshold squares. IEEE Trans Circuits Syst Video Technol 26(9):1709–1721

    Article  Google Scholar 

  27. Wang F, Zhang J, Guo Q, Liu P, Tu D (2015) Robust visual tracking via discriminative structural sparse feature. In: Proc. of the Chinese conf. on image and graphics technologies, pp 438–446

    Google Scholar 

  28. Wang H, Ge H, Zhang S (2016) Object tracking via 2DPCA and l2-regularization. J of Electrical Comput Engineering 2016:1–7

    Google Scholar 

  29. Wang N, Yeung D-Y (2013) Learning a deep compact image representation for visual tracking. In: Proc. of advances in neural information process systems (NIPS), pp 809–817

  30. Wu Y, Lim J, Yang M (2013) Online object tracking: a benchmark. In: Proc. of the IEEE Conf. on Comput. Vision and Pattern Recogn. (CVPR), pp 2411–2418

  31. Yan J, Tong M (2011) Weighted sparse coding residual minimization for visual tracking. In: Proc. of visual communications and image process. (VCIP), pp 1–4

  32. Yang H, Shao L, Zheng F, Wang L, Song Z (2011) Recent advances and trends in visual tracking: a review. Neurocomputing 74(18):3823–3831

    Article  Google Scholar 

  33. Yang M, Zhang D, Yang J, Zhang D (2011) Robust sparse coding for face recognition. In: Proc. of the IEEE Conf on Comput Vision and Pattern Recogn (CVPR), pp 625–632

  34. Yilmaz A, Javed O, Shah M (2006) Object tracking: a survey. ACM Comput Surv 38(4):1–45

    Article  Google Scholar 

  35. Yu Q, Dinh T, Medioni G (2008) Online tracking and reacquisition using co-trained generative and discriminative trackers. In: Proc of European conf on comput vision (ECCV), pp 678–691

    Google Scholar 

  36. Zhang X, Xia G-S, Lu Q, Shen W, Zhang L (2018) Visual object tracking by correlation filters and online learning. ISPRS J Photogramm Remote Sens 140:77–89

    Article  Google Scholar 

  37. Zhong W, Lu H, Yang M-H (2014) Robust object tracking via sparse collaborative appearance model. IEEE Trans Image Process 23(5):2356–2368

    Article  MathSciNet  Google Scholar 

  38. Zhou T, Bhaskar H, Liu F, Yang J, Cai P (2017) Online learning and joint optimization of combined spatial-temporal models for robust visual tracking. Neurocomputing 226:221–237

    Article  Google Scholar 

  39. Zhou T, Bhaskar H, Xie K, Yang J, He X, Shi P (2015) Online learning of multi-feature weights for robust object tracking. In: Proc. of the IEEE int conf on image process (ICIP), pp 725–729

  40. Zhou T, Liu F, Bhaskar H, Yang J (2018) Robust visual tracking via online discriminative and low-rank dictionary learning. IEEE Trans Cybernetics 48(9):2643–2655

    Article  Google Scholar 

  41. Zhuang B, Wang L, Lu H (2016) Visual tracking via shallow and deep collaborative model. Neurocomputing 218:61–71

    Article  Google Scholar 

  42. http://www.cs.toronto.edu/dross/ivt. Accessed: Jun, 2014

  43. http://faculty.ucmerced.edu/mhyang/project/tip13_prototype/TIP12-SP.htm. Accessed: Mar, 2014

  44. http://faculty.ucmerced.edu/mhyang/project/cvpr13_lss/LSST-MatlabCode-V1.zip. Accessed: Sep, 2015

  45. https://github.com/huchuanlu/15_9. Accessed: Feb, 2016

  46. https://github.com/huchuanlu/15_12. Accessed: Feb, 2016

  47. https://github.com/huchuanlu/14_1. Accessed: Oct, 2015

  48. http://winsty.net/dlt.html. Accessed: Apr, 2017

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Omair Ahmad.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, B.K.S., Swamy, M. & Ahmad, M.O. Robust coding in a global subspace model and its collaboration with a local model for visual tracking. Multimed Tools Appl 79, 4525–4551 (2020). https://doi.org/10.1007/s11042-019-7685-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-019-7685-2

Keywords