Abstract
Due to the invariance to translation, rotation and scaling, the seven invariant moments presented by Hu (Visual pattern recognition by moment invariants, IRE Transactions on Information Theory, vol. 8, February 1962, pp. 179–187) are widely used in the field of pattern recognition. The set of these moments is finite; therefore, they do not comprise a complete set of image descriptors. To solve this problem, we introduce in this paper a new set of invariant moments of infinite order. The non-orthogonal property causes the redundancy of information. For this reason, we propose a new set of orthogonal polynomials in two variables, and we present a set of orthogonal moments, which are invariant to rotation, scale and translation. The presented approaches are tested by the invariability of the moments, the image retrieval and the classification of the objects. In this framework, using the proposed orthogonal moments, we present two classification systems. The first based on the Fuzzy C-Means Clustering algorithm (FCM) and the second based on the Radial Basis Functions Neural Network (RBF). The performance of our invariant moments is compared with Legendre invariant moments, Tchebichef-Krawtchouk (TKIM), Tchebichef-Hahn (THIM), Krawtchouk-Hahn (KHIM), Hu invariant moments, the descriptor of histogram of oriented gradients (HOG), the adaptive hierarchical density histogram features (AHDH) and with descriptors of color and texture Hist, HSV, FOS and SGLD. The experimental tests are performed on seven image databases: Columbia Object Image Library (COIL-20) database, MPEG7-CE shape database, MNIST handwritten digit database, MNIST fashion image database, ImageNet database, COIL-100 database and ORL database. The obtained results show the efficiency and superiority of our orthogonal invariant moments.
Similar content being viewed by others
References
Broomhead DS, David L (1988) Radial basis functions, multi-variable functional interpolation and adaptive networks. Technical report RSRE 2:41–48
Chong C, Caramesran R, Cukundan R (2004) Translation and scale invariants of legendre moments. Pattern Recogn 37(1):119–129. https://doi.org/10.1016/j.patcog.2003.06.003
Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. Proceedings of IEEE Conference Computer Vision and Pattern Recognition:886–893
Dunn JC (1974) A fuzzy relative of the isodata process and its use in detecting compact well separated clusters. Journal of Cybernetics 3(3):32–57
Faloutsos C, Equitz W, Flickner M, Niblack W, Petkovic D, Barber R (1994) Efficient and effective querying by image content. Journal of Intelligent 335 Information Systems 3(4): 231–262.
Hafner J, Sawhney H, Equitz W, Flickner M, Niblack W (1995) Efficient color histogram indexing for quadratic form distance function. IEEE Trans Pattern Anal Mach Intell 7(17):729–736
Haralick R, Dinstein I, Shanmugam K (1973) Textural features for image classification. IEEE Transactions on systemes, Man and Cybernetics 3(6):610–621
Hmimid A, Sayyouri M, Qjidaa H (2015) Fast computation of separable two-dimensional discrete invariant moments for image classification. Pattern Recogn 48:509–521. https://doi.org/10.1016/j.patcog.2014.08.020
Hu MK (1962) Visual pattern recognition by moment invariants. IRE Trans Inform Theory 8:179–187
Hu X, Zhang Q, Shi J, Qi Y (2016) A Comparative Study on Weighted Central Moment and Its Application in 2D Shape Retrieval. Information 7
Jahid T, Karmouni H, Hmimid A, Sayyouri M, Qjidaa H (2019) Fast computation of ChVGVarlier moments and its inverses using Clenshaw’s recurrence formula for image analysis. Multimed Tools Appl 78:12183–12201. https://doi.org/10.1007/s11042-018-6757-z
Khotanzad A, Hong Y (1990) Invariant image recognition by zernike moments. IEEE Trans Pattern Anal Mach Intell 12:489–497. https://doi.org/10.1109/34.55109
LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2344. https://doi.org/10.1109/5.726791
Liao SX, Pawlak M (1996) On image analysis by moments. IEEE Trans Pattern Anal Mach Intell 18(3):254–266. https://doi.org/10.1109/34.485554
Press W, Flannery B, Teukolsky S, Vetterling W (2020). Numerical recipes. The art of scientific computing. IEEE Transactions on Pattern Analysis and Machine Intelligence
Sidiropoulos P, Vrochidis S, Kompatsiaris I (2011) Content based binary image retrieval using the adaptive hierarchical density histogram. Pattern Recogn 44(4):739–750. https://doi.org/10.1016/j.patcog.2010.09.014
Teague M (1980) Image analysis via the general theory of moments. J Opt Soc Am A 70:920–930. https://doi.org/10.1364/JOSA.70.000920
Zhang H, Shu HZ, Han GN, Coatrieux G, Luo LM, Coatrieux JL (2010) Blurred image recognition by Legendre moment invariants. Image Processing, IEEE Transactions on Image Processing 19(3):596–611. https://doi.org/10.1109/TIP.2009.2036702
Zhu H (2012) Image representation using separable two- dimensional continuous and discrete orthogonal moments. Pattern Recogn 45(4):1540–1558. https://doi.org/10.1016/j.patcog.2011.10.002
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendices
Appendix 1: Proof of Theorem 1
Hu has been proved in [9] that the normalized central moments μn, m are invariant to the translation and to the scale, i.e.
where ft and fs are the translated and scaled image of the original image f f respectively. Whatever the translation vector and the scaling factor. We use equations (12) and (73), we get
Therefore, the moments ∅n, n = 1, 2, 3… are invariant to translation and scaling. Now we will prove the invariance under rotation. If the image f(x, y) is rotated by an angle θ, the rotation matrix is
of the inverse matrix is M−θ. The rotated image is
and the moment after the rotation is
We use the equations (12), (4) and (2), we get
By letting \( \left(\begin{array}{c}{x}^{\prime}\\ {}y\hbox{'}\end{array}\right)={M}_{\theta}\left(\begin{array}{c}x\\ {}y\end{array}\right)=\left(\begin{array}{c}x\cos \left(\theta \right)-y\sin \left(\theta \right)\\ {}x\sin \left(\theta \right)+y\cos \left(\theta \right)\end{array}\right), \) we have
dμ = dxdy = |M−θ|dx′dy′ = dx ′ dy′ and \( \left(\begin{array}{c}\overline{x}\\ {}\overline{y}\end{array}\right)={M}_{-\theta}\left(\begin{array}{c}\overline{x^{\prime }}\\ {}\overline{y^{\prime }}\end{array}\right), \) the moment ∅n(fr) can be written as
Where
We use the following Newton’s binomial formula
and Eq.(80), we get
We have,
This equation and Newton’s binomial formula give
Equations (83), (84) and (2) give
Equations (85), (4) and (12) give
This means that, the moments ∅n are invariant to rotation. But they are not orthogonal, which produces the information redundancy of the image. For this reason, we will present in the next section a new set of orthogonal invariant moments in terms of the normalized central moments and the proposed moments∅n.
Appendix 2: Calculation of the first orthogonal polynomials
B(0, 1) = {(x, y) ∈ ℝ2; x2 + y2 ≤ 1}. Therefore, the scalar product 〈., .〉 associated with is defend as follows
Using the algorithm (24)–(28), the polynomials Pn(x, y), n = 0, 1, 2, . . can be calculated as follow:
Step 0: Eq. (24) gives P0(x, y) = 1.
Step 1: Eq. (25) gives
$$ {a}_1=\frac{\left\langle \left({x}^2+{y}^2\right){P}_0,{P}_0\right\rangle }{\left\langle {P}_0,{P}_0\right\rangle }=\frac{\left\langle \left({x}^2+{y}^2\right),\kern0.75em 1\right\rangle }{\left\langle 1,1\right\rangle }=\frac{\int_{-\infty}^{+\infty }{\int}_{-\infty}^{+\infty}\left({x}^2+{y}^2\right)w\left(x,y\right) dxdy}{\int_{-\infty}^{+\infty }{\int}_{-\infty}^{+\infty }w\left(x,y\right) dxdy} $$
We pose x = rcos(θ) and y = rsin(θ), where r ∈ [0; 1] and θ ∈ [0; 2π], we get
Eq. (26) gives \( {P}_1\left(x,y\right)={x}^2+{y}^2-\frac{1}{2}. \)
Step 2: Eq. (25) gives
Equation (27) gives
Equation (28) gives
Step 3: Eq. (25) gives
Equation (27) gives
Equation (28) gives
And so on. The first four polynomials associated with the weight function w(x, y) P0, P1, P2 and P3 are computed.
Appendix 3: Proof of Theorem 2
Since P0 and P1 are in two variables polynomials has exactly degree 0 and 2 respectively. By induction we can show that Pn is a two variables polynomial which has exactly degree 2n. 〈Pn − 1, Pn − 1〉 and 〈Pn − 2, Pn − 2〉 are non-zero for all n ≥ 2. We will show by strongly induction on n that: for all n ≥ 1.
We prove that the property is true for n = 1. From equations (24) and (26), we have
Assume that the property holds for all k = 1, 2, …, n − 1, i. e.
We prove that the property is true for n, i.e.,
From Eq. (28), we have
Eq. (25) gives 〈(x2 + y2)Pn − 1, Pn − 1〉 − an〈Pn − 1, Pn − 1〉 = 0 and the induction hypothesis (96) gives, 〈Pn − 2, Pn − 1〉 = 0. Therefore 〈Pn, Pn − 1〉 = 0.
We have also,
Eq. (27) gives, 〈(x2 + y2)Pn − 1, Pn − 2〉 − bn〈Pn − 2, Pn − 2〉 = 0 and the induction hypothesis gives, 〈Pn − 1, Pn − 2〉 = 0. Therefor 〈Pn, Pn − 2〉 = 0.
The induction hypothesis gives 〈Pn − 1, Pi〉 = 0 and 〈Pn − 2, Pi〉 = 0. Then
Eq. (28) gives, (x2 + y2)Pi = Pi + 1 + ai + 1Pi + bi + 1Pi − 1. This relation and Eq.(101) give,
and the induction hypothesis gives
Appendix 4: Proof of proposition 1
We prove this result by induction on n
Assume the result holds for n – 1. We show that the result holds for n.
Using the induction hypothesis, the relation (104) can be rewritten as
Appendix 5. Proof of theorem 3
According to Eq. (38) and remark 1, we have
From lemma 1, there exit a set of scalars {αi, i = 0, …, n} with αn = 1 such that
\( {Q}_n(X)=\sum \limits_{i=0}^n{\alpha}_i{X}^i \) and Pn(x, y) = Qn(x2 + y2). Therefore, Eq. (106) can be rewritten as
where \( {\beta}_i={M}_{00}^{i+1}{\rho}_n{\alpha}_i. \)
According to equation (107), the orthogonal moment OIMn is a linear combination of the moments∅i, i = 0, …, n, which are invariant under translation, scaling and rotation (theorem 1). Then OIMn is also invariant under the three geometrical transformations for all n ≥ 0.
Rights and permissions
About this article
Cite this article
Hjouji, A., EL-Mekkaoui, J. & Jourhmane, M. Rotation scaling and translation invariants by a remediation of Hu’s invariant moments. Multimed Tools Appl 79, 14225–14263 (2020). https://doi.org/10.1007/s11042-020-08648-5
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11042-020-08648-5