Abstract
The essence of wireless communication and multimedia information transmission is the propagation of electromagnetic waves in the atmosphere. Within the framework of Generalized Lorenz Mie theory, and combining the vector wave theory with the generalized multi-spheres Mie theory, the analytical solution to the scattering of the high-order Bessel vortex beam (HOBVB) by aerosol aggregation in atmosphere is investigated. The angle distributions of the scattered field of soot, silicate and nitrate aerosol cluster particles illuminated by a HOBVB are numerically discussed. The examples are selected to illustrate the effects of aggregation configuration, mean value, particle number, topological charge and half-cone angle of the beam on the angle distribution of scattered field. It is noticed that the angle distribution of scattered field is sensitive to the configuration of the cluster for the multiple refraction and interactive scattering. The variation of the mean value of radius of the aerosol aggregation will result in different scattering characteristics and different transmission efficiency. The integration of the scattering algorithm and deep learning can be used in inversion of the shape and components of the aerosol clusters and in the improvement of transmission efficiency of multimedia information in atmosphere.
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-020-08773-1/MediaObjects/11042_2020_8773_Fig1_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-020-08773-1/MediaObjects/11042_2020_8773_Fig2_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-020-08773-1/MediaObjects/11042_2020_8773_Fig3_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-020-08773-1/MediaObjects/11042_2020_8773_Fig4_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-020-08773-1/MediaObjects/11042_2020_8773_Fig5_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-020-08773-1/MediaObjects/11042_2020_8773_Fig6_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-020-08773-1/MediaObjects/11042_2020_8773_Fig7_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-020-08773-1/MediaObjects/11042_2020_8773_Fig8_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-020-08773-1/MediaObjects/11042_2020_8773_Fig9_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-020-08773-1/MediaObjects/11042_2020_8773_Fig10_HTML.png)
Similar content being viewed by others
References
Al Naboulsi MC, Sizun H, de Fornel F (2004) Fog attenuation prediction for optical and infrared waves. Opt Eng 43(2):319–330
Chang H, Charalampopoulos TT (1990) determination of the wavelength dependence of refractive indices of flame soot. Proc R Soc Lond A 430(1880):577–591
Chen LWA, Chow JC, Doddridge BG, Dickerson RR, Ryan WF, Mueller PK (2003) Analysis of a summertime PM2.5 and haze episode in the mid-Atlantic region. J Air Waste Manage Assoc 53(8):946–956
Chu X (2011) Evolution of an airy beam in turbulence. Opt Lett 36(14):2701–2703
Cincotti G, Ciattoni A, Palma C (2002) Laguerre-gauss and Bessel-gauss beams in uniaxial crystals. J Opt Soc Am A 19(8):1680–1688
Draine BT (1988) The discrete-dipole approximation and its application to interstellar graphite grains. Astrophys J 333:848–872
Fuller KA, Kattawar GW (1988) Consummate solution to the problem of classical electromagnetic scattering by an ensemble of spheres. I: linear chains. Opt Lett 13(2):90–92
Fuller KA, Kattawar GW (1988) Consummate solution to the problem of classical electromagnetic scattering by an ensemble of spheres. II: clusters of arbitrary configuration. Opt Lett 13:1063–1065
Garbin V, Volpe G, Ferrari E, Kozyreff G, Versluis M, Petrov D, Cojoc D (2008) Mie scattering of a Laguerre-Gaussian beam for position detection of microbubbles. 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science, San Jose, CA, 1–2
Gibson G, Courtial J, Padgett M, Vasnetsov M, Pas'ko V, Barnett S, Franke-Arnold S (2004) Free-space information transfer using light beams carrying orbital angular momentum. Opt Express 12(22):5448–5456
Gouesbet G, Lock JA (2017) A darkness theorem for the beam shape coefficients and its relationship to higher-order non-vortex Bessel beams. J Quant Spectrosc Radiat Transf 201:229–235
Huang C, Wu Z, Liu Y, Long S (2013) Numerical calculation of optical properties of multi-particle size aerosol aggregate particles. Acta Opt Sin 33(6):0601004
Iatì MA, Saija R, Giusto A, Denti P, Borghese F, Cecchi-Pestellini C (2004) Optical propertiesof interstellar grain aggregates. J Quant Spectrosc Radiat Transf 89(1–4):43–51
Irene R, Salvador G, Celia M (2009) Atmospheric inorganic aerosol of a non-industrial city in the Centre of an industrial region of the north of Spain, and its possible influence on the climate on a regional scale. Environ Geol 56(8):1551–1561
Jacquier S, Gruy F (2007) Approximation of the light scattering cross-section for aggregated spherical non-absorbent particles. J Quant Spectrosc Radiat Transf 106(1–3):133–144
Jiang Y, Wang S, Zhang J, Ou J, Tang H (2013) Spiral spectrum of Laguerre-Gaussian beam propagation in non-Kolmogorov turbulence. Opt Commun 303:38–41
Lin J, Yuan XC, Tao SH, Burge RE (2007) Multiplexing free-space optical signals using superimposed collinear orbital angular momentum states. Appl Opt 46(21):4680–4685
Liu B, Zhong ZQ, Zhou J (2007) Development of a Mie scattering lidar system for measuring whole tropospheric aerosols. J Opt A Pure Appl Opt 9(10):828–832
Liu Y-D, Gao C, Qi X, Weber H (2008) Orbital angular momentum (OAM) spectrum correction in free space optical communication. Opt Express 16(10):7091–7101
Meakin P (1983) Formation of fractal cluster and networks by irreversible diffusion-limited aggregation. Phys Rev Lett 51(13):1119–1122
Menon S, Unger N, Koch D, et.al (2008) Aerosol climate effects and air quality impacts from 1980 to 2030. Environ Res Lett 3 (2):024004
Mie G (1908) Contributions to the optics of turbid media, particularly of colloidal metal solutions (translation). Ann Phys 330(3):377–445
Mishchenko MI, Mackowski DW (1994) Light scattering by randomly oriented bispheres. Opt Lett 19(20):1604–1606
Mishra SR (1991) A vector wave analysis of a Bessel beam. Opt Commun 85:159–161
Mitri FG (2011) Electromagnetic wave scattering of a higher-order Bessel vortex beam by a dielectric sphere. IEEE Trans Antennas Propag 59(11):4375–4437
Mitri FG (2011) Vector wave analysis of an electromagnetic high-order Bessel vortex beam of fractional type α. Opt Lett 36(5):606–608
Mitri FG (2017) Optical Bessel beam illumination of a subwavelength prolate gold(au) spheroid coated by a layer of plasmonic material: radiation force, spin and orbital torques. J Phys Commun 1:015001
Mitri FG, Li RX, Guo LX, Ding CY (2017) Optical tractor Bessel polarized beams. J Quant Spectrosc Radiat Transf 187:97–115
Moll F, Knapek M (2007) Wavelength selection criteria and link availability due to cloud coverage statistics and attenuation affecting satellite, aerial, and downlink scenarios. Proc. SPIE 6709, Free-Space Laser Communications VII, 670916. https://doi.org/10.1117/12.734269
Paterson C (2005) Atmospheric turbulence and orbital angular momentum of single photos for optical communication. Phys Rev Lett 94:153901
Peterson B, Ström S (1973) T matrix for electromagnetic scattering form an arbitrary number of scatters and representation of E(3). Phys Rev D 8(10):3661–3677
Pinnick RG, Rosen JM, Hofmann DJ (1976) Stratospheric aerosol measurementsIII: optical model calculations. Atmos Sci 33(2):304–314
Purcell EM, Pennypacker CR (1973) Scattering and absorption of light by nonspherical dielectric grains. Astrophys J 186:705–714
Qu T, Wu Z, Shang Q, Wu J, Bai L (2018) Interactions of high-order Bessel vortex beam with a multilayered chiral sphere: scattering and orbital angular momentum spectrum analysis. J Quant Spectrosc Radiat Transf 217:363–372
Reddy SG, Prabhakar S, Kumar A, Banerji J, Singh RP (2014) Higher order optical vortices and formation of speckles. Opt Lett 39(15):4364–4366
Rouleau F, Martin PG (1991) Shape and clustering effects on the optical properties of amorphous carbon. Astrophys J 377(8):526–540
Simpson N, Dholakia K, Allen L, Padgett M (1997) Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner. Opt Lett 22(1):52–54
Wang C, Zhang M, Xu ZW, Chen C, Sheng DS (2014) Effects of anisotropic Ionospheric irregularities on space-borne SAR imaging. IEEE Trans Antennas Propag 62(9):4664–4673
Wang C, Zhang M, Xu ZW, Chen C, Guo LX (2015) Cubic phase distortion and irregular degradation on SAR imaging due to the ionosphere. IEEE Trans Geosci Remote Sens 53(6):3442–3451
Witten TA, Sander LM (1983) Diffusion-limited aggregation. Phys Rev B Condens Matter 27:5686–5697
Xu Y (1995) Electromagnetic scattering by an aggregate of spheres. Appl Opt 34(21):4573–4588
Xu Y (1997) Electromagnetic scattering by an aggregate of spheres: far field. Appl Opt 36(36):9496–9508
Yu MP, Han YP, Cui ZW, Chen AT (2017) Electromagnetic scattering by multiple dielectric particles under the illumination of unpolarized high-order Bessel vortex beam. J Quant Spectrosc Radiat Transf 195:107–113
Funding
This research was funded by National Natural Science Foundation of China (61601355, 61571355, 61701382, and 61875156), China Postdoctoral Science Foundation (2016 M602770), the National Natural Science Foundation of Shaanxi Province under Grant no 2019JQ-405, Postdoctoral Science Foundation in Shaanxi Province and Fundamental Research Funds for the Central Universities (XJS190209).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Qu, T., Li, H., Wu, Z. et al. Scattering of aerosol by a high-order Bessel vortex beam for multimedia information transmission in atmosphere. Multimed Tools Appl 79, 34159–34171 (2020). https://doi.org/10.1007/s11042-020-08773-1
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11042-020-08773-1