Skip to main content
Log in

Scattering of aerosol by a high-order Bessel vortex beam for multimedia information transmission in atmosphere

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

The essence of wireless communication and multimedia information transmission is the propagation of electromagnetic waves in the atmosphere. Within the framework of Generalized Lorenz Mie theory, and combining the vector wave theory with the generalized multi-spheres Mie theory, the analytical solution to the scattering of the high-order Bessel vortex beam (HOBVB) by aerosol aggregation in atmosphere is investigated. The angle distributions of the scattered field of soot, silicate and nitrate aerosol cluster particles illuminated by a HOBVB are numerically discussed. The examples are selected to illustrate the effects of aggregation configuration, mean value, particle number, topological charge and half-cone angle of the beam on the angle distribution of scattered field. It is noticed that the angle distribution of scattered field is sensitive to the configuration of the cluster for the multiple refraction and interactive scattering. The variation of the mean value of radius of the aerosol aggregation will result in different scattering characteristics and different transmission efficiency. The integration of the scattering algorithm and deep learning can be used in inversion of the shape and components of the aerosol clusters and in the improvement of transmission efficiency of multimedia information in atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Al Naboulsi MC, Sizun H, de Fornel F (2004) Fog attenuation prediction for optical and infrared waves. Opt Eng 43(2):319–330

  2. Chang H, Charalampopoulos TT (1990) determination of the wavelength dependence of refractive indices of flame soot. Proc R Soc Lond A 430(1880):577–591

    Article  Google Scholar 

  3. Chen LWA, Chow JC, Doddridge BG, Dickerson RR, Ryan WF, Mueller PK (2003) Analysis of a summertime PM2.5 and haze episode in the mid-Atlantic region. J Air Waste Manage Assoc 53(8):946–956

    Article  Google Scholar 

  4. Chu X (2011) Evolution of an airy beam in turbulence. Opt Lett 36(14):2701–2703

    Article  Google Scholar 

  5. Cincotti G, Ciattoni A, Palma C (2002) Laguerre-gauss and Bessel-gauss beams in uniaxial crystals. J Opt Soc Am A 19(8):1680–1688

    Article  MathSciNet  Google Scholar 

  6. Draine BT (1988) The discrete-dipole approximation and its application to interstellar graphite grains. Astrophys J 333:848–872

    Article  Google Scholar 

  7. Fuller KA, Kattawar GW (1988) Consummate solution to the problem of classical electromagnetic scattering by an ensemble of spheres. I: linear chains. Opt Lett 13(2):90–92

    Article  Google Scholar 

  8. Fuller KA, Kattawar GW (1988) Consummate solution to the problem of classical electromagnetic scattering by an ensemble of spheres. II: clusters of arbitrary configuration. Opt Lett 13:1063–1065

    Article  Google Scholar 

  9. Garbin V, Volpe G, Ferrari E, Kozyreff G, Versluis M, Petrov D, Cojoc D (2008) Mie scattering of a Laguerre-Gaussian beam for position detection of microbubbles. 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science, San Jose, CA, 1–2

  10. Gibson G, Courtial J, Padgett M, Vasnetsov M, Pas'ko V, Barnett S, Franke-Arnold S (2004) Free-space information transfer using light beams carrying orbital angular momentum. Opt Express 12(22):5448–5456

    Article  Google Scholar 

  11. Gouesbet G, Lock JA (2017) A darkness theorem for the beam shape coefficients and its relationship to higher-order non-vortex Bessel beams. J Quant Spectrosc Radiat Transf 201:229–235

    Article  Google Scholar 

  12. Huang C, Wu Z, Liu Y, Long S (2013) Numerical calculation of optical properties of multi-particle size aerosol aggregate particles. Acta Opt Sin 33(6):0601004

    Article  Google Scholar 

  13. Iatì MA, Saija R, Giusto A, Denti P, Borghese F, Cecchi-Pestellini C (2004) Optical propertiesof interstellar grain aggregates. J Quant Spectrosc Radiat Transf 89(1–4):43–51

    Article  Google Scholar 

  14. Irene R, Salvador G, Celia M (2009) Atmospheric inorganic aerosol of a non-industrial city in the Centre of an industrial region of the north of Spain, and its possible influence on the climate on a regional scale. Environ Geol 56(8):1551–1561

    Article  Google Scholar 

  15. Jacquier S, Gruy F (2007) Approximation of the light scattering cross-section for aggregated spherical non-absorbent particles. J Quant Spectrosc Radiat Transf 106(1–3):133–144

    Article  Google Scholar 

  16. Jiang Y, Wang S, Zhang J, Ou J, Tang H (2013) Spiral spectrum of Laguerre-Gaussian beam propagation in non-Kolmogorov turbulence. Opt Commun 303:38–41

    Article  Google Scholar 

  17. Lin J, Yuan XC, Tao SH, Burge RE (2007) Multiplexing free-space optical signals using superimposed collinear orbital angular momentum states. Appl Opt 46(21):4680–4685

    Article  Google Scholar 

  18. Liu B, Zhong ZQ, Zhou J (2007) Development of a Mie scattering lidar system for measuring whole tropospheric aerosols. J Opt A Pure Appl Opt 9(10):828–832

    Article  Google Scholar 

  19. Liu Y-D, Gao C, Qi X, Weber H (2008) Orbital angular momentum (OAM) spectrum correction in free space optical communication. Opt Express 16(10):7091–7101

    Article  Google Scholar 

  20. Meakin P (1983) Formation of fractal cluster and networks by irreversible diffusion-limited aggregation. Phys Rev Lett 51(13):1119–1122

    Article  Google Scholar 

  21. Menon S, Unger N, Koch D, et.al (2008) Aerosol climate effects and air quality impacts from 1980 to 2030. Environ Res Lett 3 (2):024004

  22. Mie G (1908) Contributions to the optics of turbid media, particularly of colloidal metal solutions (translation). Ann Phys 330(3):377–445

    Article  Google Scholar 

  23. Mishchenko MI, Mackowski DW (1994) Light scattering by randomly oriented bispheres. Opt Lett 19(20):1604–1606

    Article  Google Scholar 

  24. Mishra SR (1991) A vector wave analysis of a Bessel beam. Opt Commun 85:159–161

    Article  Google Scholar 

  25. Mitri FG (2011) Electromagnetic wave scattering of a higher-order Bessel vortex beam by a dielectric sphere. IEEE Trans Antennas Propag 59(11):4375–4437

    Article  Google Scholar 

  26. Mitri FG (2011) Vector wave analysis of an electromagnetic high-order Bessel vortex beam of fractional type α. Opt Lett 36(5):606–608

    Article  MathSciNet  Google Scholar 

  27. Mitri FG (2017) Optical Bessel beam illumination of a subwavelength prolate gold(au) spheroid coated by a layer of plasmonic material: radiation force, spin and orbital torques. J Phys Commun 1:015001

    Article  Google Scholar 

  28. Mitri FG, Li RX, Guo LX, Ding CY (2017) Optical tractor Bessel polarized beams. J Quant Spectrosc Radiat Transf 187:97–115

    Article  Google Scholar 

  29. Moll F, Knapek M (2007) Wavelength selection criteria and link availability due to cloud coverage statistics and attenuation affecting satellite, aerial, and downlink scenarios. Proc. SPIE 6709, Free-Space Laser Communications VII, 670916. https://doi.org/10.1117/12.734269

  30. Paterson C (2005) Atmospheric turbulence and orbital angular momentum of single photos for optical communication. Phys Rev Lett 94:153901

    Article  Google Scholar 

  31. Peterson B, Ström S (1973) T matrix for electromagnetic scattering form an arbitrary number of scatters and representation of E(3). Phys Rev D 8(10):3661–3677

    Article  MathSciNet  Google Scholar 

  32. Pinnick RG, Rosen JM, Hofmann DJ (1976) Stratospheric aerosol measurementsIII: optical model calculations. Atmos Sci 33(2):304–314

    Article  Google Scholar 

  33. Purcell EM, Pennypacker CR (1973) Scattering and absorption of light by nonspherical dielectric grains. Astrophys J 186:705–714

    Article  Google Scholar 

  34. Qu T, Wu Z, Shang Q, Wu J, Bai L (2018) Interactions of high-order Bessel vortex beam with a multilayered chiral sphere: scattering and orbital angular momentum spectrum analysis. J Quant Spectrosc Radiat Transf 217:363–372

    Article  Google Scholar 

  35. Reddy SG, Prabhakar S, Kumar A, Banerji J, Singh RP (2014) Higher order optical vortices and formation of speckles. Opt Lett 39(15):4364–4366

    Article  Google Scholar 

  36. Rouleau F, Martin PG (1991) Shape and clustering effects on the optical properties of amorphous carbon. Astrophys J 377(8):526–540

    Article  Google Scholar 

  37. Simpson N, Dholakia K, Allen L, Padgett M (1997) Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner. Opt Lett 22(1):52–54

    Article  Google Scholar 

  38. Wang C, Zhang M, Xu ZW, Chen C, Sheng DS (2014) Effects of anisotropic Ionospheric irregularities on space-borne SAR imaging. IEEE Trans Antennas Propag 62(9):4664–4673

    Article  Google Scholar 

  39. Wang C, Zhang M, Xu ZW, Chen C, Guo LX (2015) Cubic phase distortion and irregular degradation on SAR imaging due to the ionosphere. IEEE Trans Geosci Remote Sens 53(6):3442–3451

    Article  Google Scholar 

  40. Witten TA, Sander LM (1983) Diffusion-limited aggregation. Phys Rev B Condens Matter 27:5686–5697

    Article  MathSciNet  Google Scholar 

  41. Xu Y (1995) Electromagnetic scattering by an aggregate of spheres. Appl Opt 34(21):4573–4588

    Article  Google Scholar 

  42. Xu Y (1997) Electromagnetic scattering by an aggregate of spheres: far field. Appl Opt 36(36):9496–9508

    Article  Google Scholar 

  43. Yu MP, Han YP, Cui ZW, Chen AT (2017) Electromagnetic scattering by multiple dielectric particles under the illumination of unpolarized high-order Bessel vortex beam. J Quant Spectrosc Radiat Transf 195:107–113

    Article  Google Scholar 

Download references

Funding

This research was funded by National Natural Science Foundation of China (61601355, 61571355, 61701382, and 61875156), China Postdoctoral Science Foundation (2016 M602770), the National Natural Science Foundation of Shaanxi Province under Grant no 2019JQ-405, Postdoctoral Science Foundation in Shaanxi Province and Fundamental Research Funds for the Central Universities (XJS190209).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tan Qu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, T., Li, H., Wu, Z. et al. Scattering of aerosol by a high-order Bessel vortex beam for multimedia information transmission in atmosphere. Multimed Tools Appl 79, 34159–34171 (2020). https://doi.org/10.1007/s11042-020-08773-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-020-08773-1

Keywords

Navigation