Skip to main content
Log in

Exploiting Surroundedness and Superpixel cues for salient region detection

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In this paper, we will present a new salient region detection method by exploiting its surrounding and superpixel cues. Its main highlights are: 1) An input image is quantized to 256 colors by using minimum variance quantization; 2) Saliency maps is computed based on the figure-ground segregation of the quantized image; 3) Mean saliency value of each superpixel is employed to refine saliency maps further. This can highlight salient objects robustly and suppress backgrounds evenly. Experimental results show that the proposed method produces more accurate saliency maps and performs well against twenty-one saliency models concerning three evaluation metrics on two public datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. The ASD data set is available at http://ivrl.epfl.ch/supplementary_material/RK_CVPR09/.

  2. The ImgSal data set is available at http://www.escience.cn/people/jianli/DataBase.html.

References

  1. Achanta R, Süsstrunk S (2010) Saliency Detection Using Maximum Symmetric Surround. In: Proceedings of the IEEE International Conference on Image Processing, pp 2653–2656

  2. Achanta R, Estrada F, Wils P, Süsstrunk S (2008) Salient Region Detection and Segmentation. In: Proceedings of the International Conference on Computer Vision Systems, pp 66–75

  3. Achanta R, Hemami S, Estrada F, Süsstrunk S (2009) Frequency-tuned Salient Region Detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 1597–1604

  4. Borji A, Frintrop S, Sihite DN, Itti L (2012) Adaptive Object Tracking by Learning Background Context. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 23–30

  5. Chen Z, Wang R Spatial-temporal multi-task learning for salient region detection. Pattern Recogn Lett. https://doi.org/10.1016/j.patrec.2018.10.019

  6. Cheng M-M, Zhang G-X, Mitra NJ, Huang X, Hu S-M (2011) Global Contrast based Salient Region Detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 409–416

  7. Cheng M-M, Warrell J, Lin W-Y, Zheng S, Vineet V, Crook N (2013) Efficient Salient Region Detection with Soft Image Abstraction. In: Proceedings of the IEEE International Conference on Computer Vision, pp 1529–1536

  8. Duan L, Wu C, Miao J, Qing L, Fu Y (2011) Visual Saliency Detection by Spatially Weighted Dissimilarity. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 473–480

  9. Erdem E, Erdem A (2013) Visual saliency estimation by nonlinearly integrating features using region Covariances. J Vis 13(4):1–20

    Article  Google Scholar 

  10. Felzenszwalb PF, Huttenlocher DP (2004) Efficient graph-based image segmentation. Int J Comput Vis 59(2):167–181

    Article  Google Scholar 

  11. Goferman S, Zelnik-Manor L, Tal A (2010) Context-Aware Saliency Detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 2376–2383

  12. Guo C, Zhang L (2010) A novel multiresolution spatiotemporal saliency detection model and its applications in image and video compression. IEEE Trans Image Process 19(1):185–198

    Article  MathSciNet  Google Scholar 

  13. Heckbert P (1982) Color Image Quantization for Frame Buffer Display. Comput Graph (USA):297–307

  14. Hou X, Zhang L (2007) Saliency Detection: A Spectral Residual Approach. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 1–8

  15. Itti L, Koch C, Niebur E (1998) A model of saliency-based visual attention for rapid scene analysis. IEEE Trans Pattern Anal Mach Intell 20(11):1254–1259

    Article  Google Scholar 

  16. Koch C, Ullman S (1985) Shifts in selective visual attention: towards the underlying neural circuitry. Hum Neurobiol 4:219–227

    Google Scholar 

  17. Lee YJ, Ghosh J, Grauman K (2012) Discovering Important People and Objects for Egocentric Video Summarization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 1346–1353

  18. Li HL, Ngan KN (2011) A co-saliency model of image pairs. IEEE Trans Image Process 20(12):3365–3375

    Article  MathSciNet  Google Scholar 

  19. Li J, Levine MD, An X, Xu X, He H (2013) Visual saliency based on scale-space analysis in the frequency domain. IEEE Trans Pattern Anal Mach Intell 35(4):996–1010

    Article  Google Scholar 

  20. Lou J, Ren M, Wang H (2014) Regional principal color based on saliency detection. PLoS One 9(11):1–13

    Google Scholar 

  21. Lou J, Wang H, Chen L, Xia Q, Zhu W, Ren M (2017) Exploiting Color Name Space for Salient Object Detection. arXiv preprint, 1–13

  22. Lou J, Zhu W, Wang H, Ren M (2017) Small target detection combining regional stability and saliency in a color image. Multimed Tools Appl 76(13):14781–14798

    Article  Google Scholar 

  23. Ma Y-F, Zhang H-J (2003) Contrast-based Image Attention Analysis by Using Fuzzy Growing. In: Proceedings of the ACM International Conference on Multimedia, pp 374–381

  24. Margolin R, Tal A, Zelnik-Manor L (2013) What Makes a Patch Distinct? In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 1139–1146

  25. Murray N, Vanrell M, Otazu X, Parraga CA (2011) Saliency Estimation Using a Non-Parametric Low-Level Vision Model. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 433–440

  26. Palmer SE (1999) Vision science: from photons to phenomenology. The MIT Press, Cambridge, Massachusetts

    Google Scholar 

  27. Qin C, Zhang G, Zhou Y, Tao W, Cao Z (2014) Integration of the saliency-based seed extraction and random walks for image segmentation. Neurocomputing 129:378–391

    Article  Google Scholar 

  28. Rahtu E, Kannala J, Salo M, Heikkilä J (2010) Segmenting Salient Objects from Images and Videos. In: Proceedings of the European Conference on Computer Vision, pp 366–379

  29. Ren Z, Gao S, Chia L-t, Tsang I W-h (2014) Region-Based Saliency Detection and Its Application in Object Recognition. IEEE Trans Circuits Syst Video Technol 24(5):769–779

    Article  Google Scholar 

  30. Russell BC, Efros AA, Sivic J, Freeman WT, Zisserman A (2006) Using Multiple Segmentations to Discover Objects and Their Extent in Image Collections. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 1605–1612

  31. Scharfenberger C, Wong A, Clausi DA (2015) Structure-guided statistical textural distinctiveness for salient region detection in natural images. IEEE Trans Image Process 24(1):457–470

    Article  MathSciNet  Google Scholar 

  32. Seo HJ, Milanfar P (2009) Static and space-time visual saliency detection by self-resemblance. J Vis 9(12):1–27

    Article  Google Scholar 

  33. Tavakoli HR, Rahtu E, Heikkilä J (2011) Fast and Efficient Saliency Detection Using Sparse Sampling and Kernel Density Estimation. In: Proceedings of the Scandinavian Conference on Image Analysis, pp 666–675

  34. Treisman AM, Gelade G (1980) A feature-integration theory of attention. Cogn Psychol 12(1):97–136

    Article  Google Scholar 

  35. Xie YL, Lu HC, Yang MH (2013) Bayesian saliency via low and mid level cues. IEEE Trans Image Process 22(5):1689–1698

    Article  MathSciNet  Google Scholar 

  36. Yan Q, Xu L, Shi J, Jia J (2013) Hierarchical Saliency Detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 1155–1162

  37. Yang C, Zhang L, Lu H (2013) Graph-regularized saliency detection with convex-Hull-based center prior. IEEE Signal Process Lett 20(7):637–640

    Article  Google Scholar 

  38. Yang C, Zhang L, Lu H, Ruan X, Yang M-H (2013) Saliency Detection via Graph-Based Manifold Ranking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 3166–3173

  39. Zhai Y, Shah M (2006) Visual Attention Detection in Video Sequences Using Spatiotemporal Cues. In: Proceedings of the ACM International Conference on Multimedia, pp 815–824

  40. Zhang J, Sclaroff S (2013) Saliency Detection: A Boolean Map Approach. In: Proceedings of the IEEE International Conference on Computer Vision, pp 153–160

  41. Zhang L, Tong MH, Marks TK, Shan H, Cottrell GW (2008) SUN: a Bayesian framework for saliency using natural statistics. J Vis 8(7):1–20

    Article  Google Scholar 

  42. Zhang J, Malmberg F, Sclaroff S (2019) Efficient Distance Transform for Salient Region Detection. In: Visual Saliency: From Pixel-Level to Object-Level Analysis. Springer, Cham, pp 45–61

    Chapter  Google Scholar 

  43. Zhang K, Li TP, Liu B, Liu QS (2019) Co-Saliency Detection via Mask-Guided Fully Convolutional Networks With Multi-Scale Label Smoothing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 3095–3104

  44. Zhao T, Wu XQ (2019) Pyramid Feature Attention Network for Saliency Detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 3085–3094

Download references

Acknowledgments

This work was supported in part by Jiangsu Policy Guidance (Industry University Research) Project (Grant no. BY2018130), Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund (Grant No. U1501501), Industry-Academia Cooperation Innovation Fund Project of Jiangsu Province(BY2016030-06), Six Talent Peaks Project in Jiangsu Province (2016-XYDXXJS-020) and Changzhou Key Laboratory of Industrial Internet and Data Intelligence (No.CM20183002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranran Liu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Chang, S., Zheng, E. et al. Exploiting Surroundedness and Superpixel cues for salient region detection. Multimed Tools Appl 79, 10935–10951 (2020). https://doi.org/10.1007/s11042-020-08783-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-020-08783-z

Keywords

Navigation