Skip to main content
Log in

Object detection based on saturation of visual perception

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

This paper presents a framework to detect salient objects from natural images through simulating human perception. We think perception saturation, generated by microsaccades in gaze, is the primary reason why human brains export consciousness of salient objects. Perception saturation is represented by using amplitude of microsaccades (AOM). When the AOM or changes of the AOM tend to zero, human perception becomes saturated. Motivated by this analysis, we construct a group of learning-based models to detect a salient object in a coarse-to-fine sequence. Firstly, a small image is selected to minimize the AOM so as to saturate the perception. Then, neural networks with random weights (NNRW) are chosen to simulate the received visual stimuli. In order to examine the changes of AOM, a positive feedback loop is constructed which executes the procedure of “pixel sampling-learning classification” iteratively. The final fixation area after iterations is regarded as a salient object. The proposed algorithm is based on unsupervised learning and data-driven completely. Our results based on open image datasets show that the proposed method achieves better performance compared to those existing unsupervised algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Borji A, Cheng M, Jiang H, Li J (2015) Salient object detection: a benchmark. IEEE Trans Image Process 24(12):5706–5722

    Article  MathSciNet  Google Scholar 

  2. Cao W, Wang X, Ming Z, Gao J (2018) A review on neural networks with random weights. Neurocomputing 275(1):278–287

    Article  Google Scholar 

  3. Cheng M, Warrell J, Lin W, Zheng S, Vineet V, Crook N (2013) Efficient salient region detection with soft image abstraction. In: IEEE ICCV, pp 1529–1536

  4. Cheng M, Mitra N, Huang X (2015) Global contrast based salient region detection. IEEE Trans Pattern Anal Mach Intell 37(3):569–582

    Article  Google Scholar 

  5. Garcia-Garcia A, Orts-Escolano S, Oprea S, Villena-Martinez V, Garcia-Rodriguez J (2017) A review on deep learning techniques applied to semantic segmentation. [OL]. arXiv: 1704.06857v1

  6. Goferman S, Manor L, Tal A (2012) Context-aware saliency detection. IEEE Trans Pattern Anal Mach Intell 34(10):1915–1926

    Article  Google Scholar 

  7. Guo C, Ma Q, Zhang L (2008) Spatio-temporal saliency detection using phase spectrum of quaternion Fourier transform. In: IEEE CVPR, pp 1–8

  8. Harel J, Koch C, Perona P (2006) Graph-based visual saliency. In: NIPS, pp 545–552

  9. Hosang J, Benenson R, Dollar P, Schiele B (2015) What makes for effective detection proposals? IEEE Trans Pattern Anal Mach Intell 38(4):814

    Article  Google Scholar 

  10. Hou X, Zhang L (2007) Saliency detection: A spectral residual approach. In: IEEE CVPR, pp 1–8

  11. Huang F, Qi J, Lu H, Zhang L, Ruan X (2017) Salient object detection via multiple instance learning. IEEE Trans Image Process 26(4):1911–1922

    Article  MathSciNet  Google Scholar 

  12. Itti L, Koch C, Niebur E (1998) A model of saliency-based visual attention for rapid scene analysis. IEEE Trans Pattern Anal Mach Intell 20(11):1254–1259

    Article  Google Scholar 

  13. Jiang H, Wang J, Yuan Z, Wu Y, Zheng N, Li S (2014) Salient object detection: A discriminative regional feature integration approach. In: IEEE CVPR, pp 2083–2090

  14. Kim J, Han D, Tai Y-W et al (2014) Salient region detection via high-dimensional color transform. In IEEE CVPR, pp 883–890

  15. Li Y, Hou X, Koch C et al (2014) The secret of salient object segmentation. In: IEEE CVPR, pp 280–287

  16. Lu S, Mahadevan V, Vasconcelos N (2014) Learning optimal seeds for diffusion-based salient object detection. In: IEEE CVPR, pp 2790–2797

  17. Margolin R, Tal A, Zelnik-Manor L (2013) What makes a patch distinct? In: IEEE CVPR, pp 1139–1146

  18. Pan C, Li X, Yan W (2018) A learning-based positive feedback approach in salient object detection. In: IEEE IVCNZ, pp 1–6

  19. Redmon J, Divvala S, Girshick R et al (2016) You Only Look Once: Unified, real-time object detection [OL]. arXiv: 1506.02640

  20. Rolfs M (2009) Microsaccades: small steps on a long way. Vis Res 49(20):2415–2441

    Article  Google Scholar 

  21. Siva P, Russell C, Xiang T, Agapito L (2013) Looking beyond the image: Unsupervised learning for object saliency and detection. In: IEEE CVPR, pp 3238–3245

  22. Tong N, Lu H, Ruan X, Yang M (2015) Salient object detection via bootstrap learning. In: IEEE CVPR, pp 1884–1892

  23. Wang T, Borji A, Zhang L, Zhang P, Lu H (2017) A stage wise refinement model for detecting salient objects in images. In: IEEE ICCV, pp 4019–4028

  24. Wei Y, Liang X, Chen Y, Shen X, Cheng MM, Feng J, Zhao Y, Yan S (2017) STC: a simple to complex framework for weakly-supervised semantic segmentation. IEEE Trans Pattern Anal Mach Intell 39(11):2314–2320

    Article  Google Scholar 

  25. Wu Z, Pan C, Yin H (2017) Novel saliency detection based on positive feedback of visual perception. J Image Graph 22(7):946–956

    Google Scholar 

  26. Zhang J, Sclaroff S (2013) Saliency detection: A Boolean map approach. In: IEEE ICCV, pp 153–160

  27. Zhang L, Li J, Lu H (2016) Saliency detection via extreme learning machine. Neurocomputing 218(8):103–112

    Article  Google Scholar 

  28. Zhang J, Xie Y, Xia Y, Shen C (2019) Attention residual learning for skin lesion classification. IEEE Trans Med Imaging 38(9):2092–2103

    Article  Google Scholar 

  29. Zhao J, Zhou Z, Cao F (2014) Human face recognition based on ensemble of polyharmonic extreme learning machine. Natural Computing and Applications pp 1317–1326

  30. Zhu W, Liang S, Wei Y, Sun J (2014) Saliency optimization from robust background detection. In: IEEE CVPR, pp 2814–2821

Download references

Acknowledgements

This research project was supported by the Natural Science Foundation of Zhejiang Province of China (No. LY19F030013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Qi Yan.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, C., Yan, W.Q. Object detection based on saturation of visual perception. Multimed Tools Appl 79, 19925–19944 (2020). https://doi.org/10.1007/s11042-020-08866-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-020-08866-x

Keywords