Skip to main content
Log in

A novel high payload steganography scheme based on absolute moment block truncation coding

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In this paper, we propose an efficient steganography method in the compressed codes of absolute moment block truncation coding (AMBTC). Many recent related schemes focus on implementing reversible data hiding in compressed AMBTC bit stream. However, the reconstructed image of AMBTC is already lossy and the strict reversibility severely limits embedding capacity. Due to the simplicity and regularity of AMBTC codes, implementing irreversible hiding scheme causes very slight loss visual distortion of reconstructed image in exchange of significant improve in embedding capacity. In proposed scheme, smoothness of AMBTC compressed trio is firstly detected, which is then indicated by substituting the LSB of high quantity level with flag bit. For smooth trios, the differences between both quantity levels are firstly encoded by Huffman coding and then concatenated with secret data to generate modified low quantity levels. Meanwhile, all bits in bit planes of smooth trios are substituted with secret data as well. For complex trio, secret bits are only embedded into quantity levels, which is similar to smooth trio except for the differences are encoded by Lloyd-Max quantization. Experimental results indicate that proposed scheme outperforms prior methods both in imperceptivity and embedding capacity, which confirms the effectiveness and superiority of our work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. http://wang.ist.psu.edu/docs/related/

References

  1. Ali YMB (2019) Smell bees optimization for new embedding steganographic scheme in spatial domain. Swarm Evol Comput 44:584–596. https://doi.org/10.1016/j.swevo.2018.08.003

    Article  Google Scholar 

  2. Bai J, Chang C-C (2016) A high payload steganographic scheme for compressed images with hamming code. Int J Netw Secur 18(6):1122–1129

    Google Scholar 

  3. Chang C, Nguyen TS, Lin C (2014) Reversible data hiding scheme for VQ indices based on absolute difference trees. KSII Trans Internet Inf Sys 8:2572–2589

    Google Scholar 

  4. Chang C-C, Liu Y, Nguyen ST (2015) A novel data hiding scheme for block truncation coding compressed images using dynamic programming strategy. In: Sixth International Conference on Graphic and Image Processing (ICGIP 2014)

  5. Chang C-C, Chen T-S, Wang Y-K, Liu Y (2018) A reversible data hiding scheme based on absolute moment block truncation coding compression using exclusive OR operator. Multimed Tools Appl 77:9039–9053. https://doi.org/10.1007/s11042-017-4800-0

    Article  Google Scholar 

  6. Cheddad A, Condell J, Curran K, Mc Kevitt P (2010) Digital image steganography: survey and analysis of current methods. Signal Process 90:727–752. https://doi.org/10.1016/j.sigpro.2009.08.010

    Article  MATH  Google Scholar 

  7. Chen J, Hong W, Chen T-S, Shiu C-W (2010) Steganography for BTC compressed images using no distortion technique. Imaging Sci J 58:177–185. https://doi.org/10.1179/136821910X12651933390629

    Article  Google Scholar 

  8. Hashim MM, Rahim MSM, Johi FA et al (2018) Performance evaluation measurement of image steganography techniques with analysis of LSB based on variation image formats. Int J Eng:3505–3514. https://doi.org/10.14419/ijet.v7i4.17294

  9. Hong W, Chen T-S, Shiu C-W (2008) Lossless Steganography for AMBTC-Compressed Images. In: 2008 Congress on image and signal processing. IEEE, Sanya, China, pp 13–17

  10. Hong W, Ma Y-B, Wu H-C, Chen T-S (2017) An efficient reversible data hiding method for AMBTC compressed images. Multimed Tools Appl 76:5441–5460. https://doi.org/10.1007/s11042-016-4032-8

    Article  Google Scholar 

  11. Hong W, Zhou X, Weng S (2018) Joint adaptive coding and reversible data hiding for AMBTC compressed images. Symmetry 10:254. https://doi.org/10.3390/sym10070254

    Article  Google Scholar 

  12. Huang Y-H, Chang C-C, Chen Y-H (2017) Hybrid secret hiding schemes based on absolute moment block truncation coding. Multimed Tools Appl 76:6159–6174. https://doi.org/10.1007/s11042-015-3208-y

    Article  Google Scholar 

  13. Huang C-T, Lin L-C, Sun D-E, Wang S-J (2018) A security-based steganographic scheme in vector quantization coding between correlated neighboring blocks. Multimed Tools Appl 78:3131–3151. https://doi.org/10.1007/s11042-018-5811-1

    Article  Google Scholar 

  14. Ishida T, Yamawaki K, Noda H, Niimi M (2008) Performance improvement of JPEG2000 steganography using QIM. IEEE, pp 155–158

  15. Kadhim IJ, Premaratne P, Vial PJ (2020) High capacity adaptive image steganography with cover region selection using dual-tree complex wavelet transform. Cogn Syst Res 60:20–32. https://doi.org/10.1016/j.cogsys.2019.11.002

    Article  Google Scholar 

  16. Lema M, Mitchell O (1984) Absolute moment block truncation coding and its application to color images. IEEE Trans Commun 32:1148–1157. https://doi.org/10.1109/TCOM.1984.1095973

    Article  Google Scholar 

  17. Li N, Huang F (2020) Reversible data hiding for JPEG images based on pairwise nonzero AC coefficient expansion. Signal Process 171:107476. https://doi.org/10.1016/j.sigpro.2020.107476

    Article  Google Scholar 

  18. Li Y, Yao S, Yang K, Tan YA, Zhang Q (2019) A high-imperceptibility and histogram-shifting data hiding scheme for JPEG images. IEEE Access 7:73573–73582. https://doi.org/10.1109/access.2019.2920178

    Article  Google Scholar 

  19. Lin C-C, Chen S-C, Hwang KF, Yao C-M (2016) A reversible data hiding scheme for BTC-compressed images. Int J Adv Comput Sci Appl (IJACSA) 7. https://doi.org/10.14569/IJACSA.2016.070552

  20. Muhammad K, Sajjad M, Mehmood I, Rho S, Baik SW (2016) A novel magic LSB substitution method (M-LSB-SM) using multi-level encryption and achromatic component of an image. Multimed Tools Appl 75:14867–14893. https://doi.org/10.1007/s11042-015-2671-9

    Article  Google Scholar 

  21. Murugan GVK, Subramaniyam RU (2019) Performance analysis of image steganography using wavelet transform for safe and secured transaction. Multimed Tools Appl 79:9101–9115. https://doi.org/10.1007/s11042-019-7507-6

    Article  Google Scholar 

  22. Ou D, Sun W (2015) High payload image steganography with minimum distortion based on absolute moment block truncation coding. Multimed Tools Appl 74:9117–9139. https://doi.org/10.1007/s11042-014-2059-2

    Article  Google Scholar 

  23. Qin C, Chang C-C, Hsu T-J (2015) Reversible data hiding scheme based on exploiting modification direction with two steganographic images. Multimed Tools Appl 74:5861–5872. https://doi.org/10.1007/s11042-014-1894-5

    Article  Google Scholar 

  24. Qiu Y, Qian Z, Zeng H, Lin X, Zhang X (2020) Reversible data hiding in encrypted images using adaptive reversible integer transformation. Signal Process 167:107288. https://doi.org/10.1016/j.sigpro.2019.107288

    Article  Google Scholar 

  25. Radoi A, Datcu M (2015) Automatic change analysis in satellite images using binary descriptors and Lloyd–max quantization. IEEE Geosci Remote Sens Lett 12:1223–1227. https://doi.org/10.1109/LGRS.2015.2389144

    Article  Google Scholar 

  26. Sahu AK, Swain G (2019) An optimal information hiding approach based on pixel value differencing and Modulus function. Wirel Pers Commun 108:159–174. https://doi.org/10.1007/s11277-019-06393-z

    Article  Google Scholar 

  27. Saidi M, Hermassi H, Rhouma R, Belghith S (2017) A new adaptive image steganography scheme based on DCT and chaotic map. Multimed Tools Appl 76:13493–13510. https://doi.org/10.1007/s11042-016-3722-6

    Article  Google Scholar 

  28. Saidi M, Mannai O, Hermassi H, Rhouma R, Belghith S (2019) USAD: undetectable steganographic approach in DCT domain. Imaging Sci J 67:237–253. https://doi.org/10.1080/13682199.2019.1620525

    Article  Google Scholar 

  29. Subhedar MS, Mankar VH (2014) Current status and key issues in image steganography: a survey. Comput Sci Rev 13–14:95–113. https://doi.org/10.1016/j.cosrev.2014.09.001

    Article  MATH  Google Scholar 

  30. Sun W, Lu Z-M, Wen Y-C, Yu FX, Shen RJ (2013) High performance reversible data hiding for block truncation coding compressed images. SIViP 7:297–306. https://doi.org/10.1007/s11760-011-0238-4

    Article  Google Scholar 

  31. Weng S, Shi Y, Hong W, Yao Y (2019) Dynamic improved pixel value ordering reversible data hiding. Inf Sci 489:136–154. https://doi.org/10.1016/j.ins.2019.03.032

    Article  Google Scholar 

  32. Yin Z, Niu X, Zhang X, Tang J, Luo B (2018) Reversible data hiding in encrypted AMBTC images. Multimed Tools Appl 77:18067–18083. https://doi.org/10.1007/s11042-017-4957-6

    Article  Google Scholar 

  33. Zhang Y, Guo S-Z, Lu Z-M, Luo H (2013) Reversible data hiding for BTC-compressed images based on lossless coding of mean tables. IEICE Trans Commun E96-B:624–631

    Article  Google Scholar 

  34. Zhang M, Zhou Q, Hu Y (2019) Lossless data hiding in JPEG images with segment coding. J Electron Imaging 28:053015

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No.61372175).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Hui.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hui, Z., Zhou, Q. A novel high payload steganography scheme based on absolute moment block truncation coding. Multimed Tools Appl 79, 24241–24264 (2020). https://doi.org/10.1007/s11042-020-09015-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-020-09015-0

Keywords

Navigation