Skip to main content
Log in

Track color space-time interest points in video

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Color Space-Time Interest Points (CSTIP) are among all the interesting low-level features which can be extracted from videos; they provide an efficient characterization of moving objects. The CSTIP are simple and can be used for video stabilization, camera motion estimation, and object tracking. In this paper, we show how the resulting features often reflect interesting events that can be used for a compact representation of video data as well as for tracking. To increase the robustness of CSTIP features extraction, we suggest a pre-processing step which is based on a Color Video Decomposition and can decompose the input images into a dynamic color texture and structure components. We compute the new Color Space Time Interest Points (CSTIP) associated to the dynamic color texture components by using the proposed algorithm of the detection of Color Space- Time Interest Points. The point tracker object tracks a set of Color Space-Time Interest Points using the robust Zero-Mean Normalized Cross-Correlation (ZNCC), feature-tracking algorithm. Experimental results are obtained from very different types of videos, namely sport videos and animation movies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Aubert G, Kornprobst P (2006) Mathematical problems in image processing: partial differential equations and the calculus of variations. vol. 147. Springer Science & Business Media

  2. Aujol J-F, Chambolle A (2005) Dual norms and image decomposition models. Int J Comput Vis 63(1):85–104

    Article  Google Scholar 

  3. Aujol J-F, Kang SH (2006) Color image decomposition and restoration. J Vis Commun Image Represent 17(4):916–928

    Article  Google Scholar 

  4. Aujol J-F et al (2005) Image decomposition into a bounded variation component and an oscillating component. J Math Imaging Vis 22(1):71–88

    Article  MathSciNet  Google Scholar 

  5. Aujol J, Gilboa G, Chan T, Osher S (2006) Structure–texture image decomposition-modeling, algorithms, and parameter selection. Int J Comput Vis 67(1):111–136

    Article  Google Scholar 

  6. Baker S, Roth S, Scharstein D, Black MJ, Lewis JP, Szeliski R (2007) A database and evaluation methodology for optical flow. ICCV07, pp. 1 http://vision.middlebury.edu/flow/data/

  7. Bellamine I, Tairi H (2015) Optical flow estimation based on the structure–texture image decomposition. SIViP 9:193–201

    Article  Google Scholar 

  8. Chambolle A (2004) An algorithm for Total variation minimization and applications. J Math Imaging Vis 20:89–97

    Article  MathSciNet  Google Scholar 

  9. Chen H, Du X, Gu W (2006) Real-time speedup techniques for region based stereo matching algorithm. Chin J Sens Actuators 1:040

    Article  Google Scholar 

  10. Chen Y, Wang J, Xia R, Zhang Q, Cao Z, Yang K (2019) The visual object tracking algorithm research based on adaptive combination kernel. J Ambient Intell Humaniz Comput 10:4855–4867. https://doi.org/10.1007/s12652-018-01171-4

    Article  Google Scholar 

  11. Chen Y et al. (2019) Multiscale fast correlation filtering tracking algorithm based on a feature fusion model. Concurr Comput Pract Exp e5533

  12. Chen Y, Wang J, Chen X, Zhu M, Yang K, Wang Z, Xia R (2019) Single-image super-resolution algorithm based on structural self-similarity and deformation block features. IEEE Access 7:58791–58801

    Google Scholar 

  13. Chowdhury K, Chaudhuri D, Pal AK, Samal A (2019) Seed selection algorithm through K-means on optimal number of clusters. Multimed Tools Appl 78:18617–18651. https://doi.org/10.1007/s11042-018-7100-4

    Article  Google Scholar 

  14. Dai C, Liu X, Lai J (2020) Human action recognition using two-stream attention based LSTM networks. Appl Soft Comput 86:105820

    Article  Google Scholar 

  15. Dollár P, Rabaud V, Cottrell G, Belongie S (2005) Behavior recognition via sparse spatio-temporal features. In: Proceedings - 2nd Joint IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance, VS-PETS

  16. Fan D-P et al. (2019) Shifting more attention to video salient object detection. Proc IEEE Conf Comput Vis Pattern Recogn

  17. Galmar E, Huet B (2012) Analysis of vector space model and spatiotemporal segmentation for video indexing and retrieval

  18. Harris C, Stephens M (1988) A combined corner and edge detector. In: Procedings of the Alvey vision conference 1988

  19. Kjeldsen R, Kender J (2002) Finding skin in color images

  20. Laptev I (2005) On space-time interest points. Int J Comput Vis 64:107–123

    Article  Google Scholar 

  21. Laptev I, Lindeberg T (2003) Space-time interest points. ICCV’03, pp.432–439. http://www.nada.kth.se/cvap/actions/

  22. Lin C, Li Y, Xu G, Cao Y (2017) Optimizing ZNCC calculation in binocular stereo matching. Signal Process Image Commun 52:64–73

    Article  Google Scholar 

  23. Liu Q, Peng GZ (2010) A robust skin color based face detection algorithm. In CAR 2010–2010 2nd International Asia Conference on Informatics in Control, Automation and Robotics

  24. Liu T et al (2020) Double-layer conditional random fields model for human action recognition. Signal Process Image Commun 80:115672

    Article  Google Scholar 

  25. Lu X et al. (2018) Deep regression tracking with shrinkage loss. Proc Eur Conf Comput Vis (ECCV)

  26. Lu X et al. (2019) See more, know more: Unsupervised video object segmentation with co-attention Siamese networks. Proc IEEE Conf Comput Vis Pattern Recogn

  27. Lugiez M, Ménard M, El-Hamidi A (2008) Dynamic color texture modeling and color video decomposition using bounded variation and oscillatory functions. 3rd international conference on image and signal processing, Cherbourg-Octeville, France pp. 277

  28. Meyer Y (2001) Oscillating patterns in image processing and nonlinear evolution equations: the fifteenth Dean Jacqueline B. Lewis memorial lectures. Am Math Soc 22:122

    MATH  Google Scholar 

  29. Meyer Y (2006) Oscillating patterns in some nonlinear evolution equations. Mathematical foundation of turbulent viscous flows. Springer, Berlin, Heidelberg, 101–187

  30. Neelima N, Ravi Kumar Y (2019) Optimal clustering based outlier detection and cluster center initialization algorithm for effective tone mapping. Multimed Tools Appl 78:31057–31075. https://doi.org/10.1007/s11042-019-07907-4

    Article  Google Scholar 

  31. Péteri R, Huiskes M, Fazekas S (n.d.) (Dyntex : A comprehensive database of dynamic textures) http://dyntex.univ-lr.fr/index.html

  32. Rudin LI, Osher S, Fatemi E (1992) Nonlinear total variation based noise removal algorithms. Physica D Nonlinear Phenom 60(1–4):259–268

    Article  MathSciNet  Google Scholar 

  33. Ryoo MS, Aggarwal JK (2010) UT-Iteraction Dataset. In: ICPR Contest on semantic Description of Human Activities, SDHA http://cvrc.ece.utexas.edu/SDHA2010/Human_Interaction.html

  34. Stöttinger J, Hanbury A, Sebe N, Gevers T (2012) Sparse color interest points for image retrieval and object categorization, vol 21. IEEE Trans Image Process, pp 2681–2692

  35. Sun C (2002) Fast stereo matching using rectangular subregioning and 3D maximumsurface techniques. Int J Comput Vis 47:99–117

    Article  Google Scholar 

  36. Terrillon J-C, Akamatsu S (1999) Comparative performance of different chrominance spaces for color segmentation and detection of human faces in complex scene images. Vis Interface

  37. Verbeke N (2007) Suivi d’objets en mouvement dans une séquence vidéo. Paris Descartes

  38. Vese LA, Osher SJ (2003) Modeling textures with total variation minimization and oscillating patterns in image processing. J Sci Comput 19(1–3):553–572

    Article  MathSciNet  Google Scholar 

  39. Vese LA, Osher SJ (2004) Image denoising and decomposition with total variation minimization and oscillatory functions. J Math Imaging Vis 20(1–2):7–18

    Article  MathSciNet  Google Scholar 

  40. Vese LA, Osher SJ (2006) Color texture modeling and color image decomposition in a variational-PDE approach. 2006 Eighth International Symposium on Symbolic and Numeric Algorithms for Scientific Computing. IEEE

  41. Wang H, Ullah MM, Klaser A, Laptev I, Schmid C )2012) Evaluation of local spatio-temporal features for action recognition

  42. Willems G, Tuytelaars T, Van Gool L (2008) An efficient dense and scale-invariant spatio-temporal interest point detector. In: Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics)

  43. Zeng J, Su X (2004) Fast dense disparity map extracting. Opt Technol 30:40–43

    Google Scholar 

  44. Zhou B, Hou X, Zhang L (2011) A phase discrepancy analysis of object motion. In: Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Bellamine.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bellamine, I., Silkan, H. & Tmiri, A. Track color space-time interest points in video. Multimed Tools Appl 79, 24579–24593 (2020). https://doi.org/10.1007/s11042-020-09037-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-020-09037-8

Keywords

Navigation