Skip to main content
Log in

High capacity partial reversible data hiding by hamming code

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

A high capacity partial reversible data hiding (PRDH) is introduced in this paper. First of all, an original image is converted to a cover image by the proposed image transformation algorithm. The image transformation algorithm adopts (7,4) Hamming code and minimal pairwise square error to ensure that the generated cover image is an almost distortion-free original image. The secret bits are embedded into the cover image by flipping and modifying the cover bits with respect to the syndrome generated by Hamming code. When the secret bits are extracted from the stego image, it can be transformed back to a cover image by the error-correcting ability provided by Hamming code. And this is the so-called partial reversible property. The visual performance and embedding capacity of the proposed method are theoretical analyzed. According to the experimental and theoretical results, high embedding capacity with acceptable visual performance is achieved by the proposed method. More specifically, the embedding rate is 10.5 times of Jana et al.’s method and Yang et al.’s proposed PRDH, and 3.5 times of Yang et al. ’s modified PRDH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Celik MU, Sharma G, Tekalp AM, Saber E (2005) Lossless generalized-lsb data embedding. IEEE Trans Image Process 14(2):253–266

    Article  Google Scholar 

  2. Chan CK, Cheng LM (2004) Hiding data in images by simple lsb substitution. Pattern Recogn 37(3):469–474

    Article  Google Scholar 

  3. Gao G, Wan X, Yao S, Cui Z, Zhou C, Sun X (2017) Reversible data hiding with contrast enhancement and tamper localization for medical images. Inform Sci 385:250–265

    Article  Google Scholar 

  4. Giboulot Q, Fridrich J (2019) Payload scaling for adaptive steganography: an empirical study. IEEE Signal Process Lett 26(9):1339–1343

    Article  Google Scholar 

  5. Golabi S, Helfroush MS, Danyali H (2018) Non-unit mapped radial moments platform for robust, geometric invariant image watermarking and reversible data hiding. Inform Sci 447:104–116

    Article  MathSciNet  Google Scholar 

  6. Hong W, Chen TS, Chang YP, Shiu CW (2010) A high capacity reversible data hiding scheme using orthogonal projection and prediction error modification. Signal Process 90(11):2911–2922

    Article  Google Scholar 

  7. Hong W, Chen TS, Wu HY (2012) An improved reversible data hiding in encrypted images using side match. IEEE Signal Process Lett 19(4):199–202

    Article  Google Scholar 

  8. Hu Y, Lee HK, Li J (2008) De-based reversible data hiding with improved overflow location map. IEEE Trans Circ Syst Video Technol 19(2):250–260

    Google Scholar 

  9. Hwang J, Kim J, Choi J (2006) A reversible watermarking based on histogram shifting. In: International workshop on digital watermarking. Springer, pp 348–361

  10. Jana B, Giri D, Mondal SK (2017) Partial reversible data hiding scheme using (7, 4) hamming code. Multimed Tools Appl 76(20):21691–21706

    Article  Google Scholar 

  11. Jia Y, Yin Z, Zhang X, Luo Y (2019) Reversible data hiding based on reducing invalid shifting of pixels in histogram shifting. Signal Process 163:238–246

    Article  Google Scholar 

  12. Kim C, Yang CN (2016) Data hiding based on overlapped pixels using hamming code. Multimed Tools Appl 75(23):15651–15663

    Article  Google Scholar 

  13. Kim KS, Lee MJ, Lee HY, Lee HK (2009) Reversible data hiding exploiting spatial correlation between sub-sampled images. Pattern Recogn 42(11):3083–3096

    Article  Google Scholar 

  14. Kim C, Shin D, Leng L, Yang CN (2018) Lossless data hiding for absolute moment block truncation coding using histogram modification. J Real-Time Image Proc 14(1):101–114

    Article  Google Scholar 

  15. Kim C, Shin D, Leng L, Yang CN (2018) Separable reversible data hiding in encrypted halftone image. Displays 55:71–79

    Article  Google Scholar 

  16. Kim C, Shin D, Yang CN, Chou YS (2018) Improving capacity of hamming (n, k)+ 1 stego-code by using optimized hamming+ k. Digit Signal Process 78:284–293

    Article  Google Scholar 

  17. Kim C, Shin D, Yang CN, Chen YC, Wu SY (2019) Data hiding using sequential hamming+ k with m overlapped pixels. KSII Trans Internet Inform Syst 13 (12):6159–6174

    Google Scholar 

  18. Kim C, Shin D, Yang CN, Chou YS (2019) Generalizing hamming+k data hiding by overlapped pixels. Multimed Tools Appl 78(13):17995–18015

    Article  Google Scholar 

  19. Liao X, Qin Z, Ding L (2017) Data embedding in digital images using critical functions. Signal Process Image Commun 58:146–156

    Google Scholar 

  20. Liao X, Yu Y, Li B, Li Z, Qin Z (2020) A new payload partition strategy in color image steganography. IEEE Trans Circ Syst Video Technol 30(3):685–696

    Article  Google Scholar 

  21. Ma K, Zhang W, Zhao X, Yu N, Li F (2013) Reversible data hiding in encrypted images by reserving room before encryption. IEEE Trans Inform Forens Secur 8(3):553–562

    Article  Google Scholar 

  22. Mielikainen J (2006) Lsb matching revisited. IEEE Signal Process Lett 13 (5):285–287

    Article  Google Scholar 

  23. Ni Z, Shi Y, Ansari N, Su W (2006) Reversible data hiding. IEEE Trans Circuits Syst Video Technol 16(3):354–362

    Article  Google Scholar 

  24. Ou B, Li X, Zhao Y, Ni R, Shi Y (2013) Pairwise prediction-error expansion for efficient reversible data hiding. IEEE Trans Image Process 22(12):5010–5021

    Article  MathSciNet  Google Scholar 

  25. Puteaux P, Puech W (2018) An efficient msb prediction-based method for high-capacity reversible data hiding in encrypted images. IEEE Trans Inform Forens Secur 13(7):1670–1681

    Article  Google Scholar 

  26. Qin C, Zhang X (2015) Effective reversible data hiding in encrypted image with privacy protection for image content. J Vis Commun Image Represent 31:154–164

    Article  Google Scholar 

  27. Ren H, Lu W, Chen B (2019) Reversible data hiding in encrypted binary images by pixel prediction. Signal Process 165:268–277

    Article  Google Scholar 

  28. Su W, Wang X, Li F, Shen Y, Pei Q (2019) Reversible data hiding using the dynamic block-partition strategy and pixel-value-ordering. Multimed Tools Appl 78(7):7927–7945

    Article  Google Scholar 

  29. Tian J (2003) Reversible data embedding using a difference expansion. IEEE Trans Circ Syst Video Technol 13(8):890–896

    Article  Google Scholar 

  30. Weng S, Shi Y, Hong W, Yao Y (2019) Dynamic improved pixel value ordering reversible data hiding. Inform Sci 489:136–154

    Article  Google Scholar 

  31. Westfeld A (2001) F5 a steganographic algorithm. In: International workshop on information hiding. Springer, pp 289–302

  32. Wu X, Sun W (2014) High-capacity reversible data hiding in encrypted images by prediction error. Signal Process 104:387–400

    Article  Google Scholar 

  33. Wu HT, Cheung Ym, Yang Z, Tang S (2019) A high-capacity reversible data hiding method for homomorphic encrypted images. J Vis Commun Image Represent 62:87–96

    Article  Google Scholar 

  34. Xiang S, Luo X (2017) Reversible data hiding in homomorphic encrypted domain by mirroring ciphertext group. IEEE Trans Circuits Syst Video Technol 28 (11):3099–3110

    Article  MathSciNet  Google Scholar 

  35. Xiao M, Li X, Wang Y, Zhao Y, Ni R (2019) Reversible data hiding based on pairwise embedding and optimal expansion path. Signal Process 158:210–218

    Article  Google Scholar 

  36. Yang CN, Hsu SC, Kim C (2017) Improving stego image quality in image interpolation based data hiding. Comput Standards Interfaces 50:209–215

    Article  Google Scholar 

  37. Yang CN, Wu SY, Chou YS, Kim C (2019) Enhanced stego-image quality and embedding capacity for the partial reversible data hiding scheme. Multimed Tools Applic, 1–22

  38. Yin Z, Xiang Y, Zhang X (2019) Reversible data hiding in encrypted images based on multi-msb prediction and huffman coding. IEEE Transactions on Multimedia

  39. Yin Z, Ji Y, Luo B (2020) Reversible data hiding in jpeg images with multi-objective optimization. IEEE Transactions on Circuits and Systems for Video Technology

  40. Zhang X (2011) Reversible data hiding in encrypted image. IEEE Signal Process Lett 18(4):255–258

    Article  Google Scholar 

  41. Zhang X, Zhang W, Wang S (2007) Efficient double-layered steganographic embedding. Electron Lett 43(8):482–483

    Article  Google Scholar 

  42. Zhang W, Wang S, Zhang X (2007) Improving embedding efficiency of covering codes for applications in steganography. IEEE Commun Lett 11(8):680–682

    Article  Google Scholar 

  43. Zhang R, Sachnev V, Botnan MB, Kim HJ, Heo J (2012) An efficient embedder for bch coding for steganography. IEEE Trans Inf Theory 58(12):7272–7279

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was partially supported by National Natural Science Foundation of China (Grant Nos. 61972179 and 61602211), Guangdong Basic and Applied Basic Research Foundation (Grant No. 2020A1515011476), Science and Technology Program of Guangzhou, China (Grant No. 201707010259), Fundamental Research Funds for the Central Universities, and MOST under contracts 109-2634-F-259-001 through Pervasive Artificial Intelligence Research (PAIR) Labs, Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaotian Wu or Ching-Nung Yang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Yang, CN. & Liu, YW. High capacity partial reversible data hiding by hamming code. Multimed Tools Appl 79, 23425–23444 (2020). https://doi.org/10.1007/s11042-020-09098-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-020-09098-9

Keywords

Navigation