Skip to main content
Log in

An efficient image retrieval based on an integration of HSV, RLBP, and CENTRIST features using ensemble classifier learning

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Recently, we have been witnessing a tremendous rise in digital image quantities, which in return calls for an adjustment and management system to fulfill user’s queries in the shortest time with maximum accuracy. In this regard, Content-Based Image Retrieval (CBIR) approaches have gained unprecedented attention. In CBIR systems, image search is based on their actual contents instead of textual annotations.

Due to the fact that users do not think of low-level image features such as color, texture, structure, and shape and are looking for high-level image features or semantic features while querying images, the performance of image retrieval systems becomes weak. On the one hand, the huge amount of extracted features and the complexity of feature spaces are considered as two main challenges in image retrieval study area. Therefore, this article trying to extract the key features of the image in order to increase the accuracy and speed of image recovery over big data.

This study combines two feature extraction techniques namely Census Transform Histogram (CENTRIST) and Rotated Local Binary Pattern (RLBP) following by Kernel Principal Component Analysis (PCA) method to reduce the dimensional feature space. In fact, after feature extraction phase we utilize Adaboost M2 classifying method on the train data to learn the different classes of images that are existed in the database. Furthermore, instead of using RGB color space, images are transformed to HSV color space. The reason for using the HSV color space instead of the RGB one is the fact that it is closer to human perception.

Performance evaluations of the proposed method are conducted on the Corel-1 K and UW datasets. Simulation results indicate that proposed method performs better than other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ahmad J, Sajjad M, Rho S, Baik SW (2016) Multi-scale local structure patterns histogram for describing visual contents in social image retrieval systems. Multimed Tools Appl 75(20):12669–12692

    Google Scholar 

  2. Ahmad J, Sajjad M, Mehmood I, Rho S, Baik SW (2017) Saliency-weighted graphs for efficient visual content description and their applications in real-time image retrieval systems. J Real-Time Image Proc 13(3):431–447

    Google Scholar 

  3. Alshehri, M. (2019). A content-based image retrieval method using neural network-based prediction technique. Arabian journal for science and engineering, 1-17.

  4. Alsmadi MK (2017) An efficient similarity measure for content based image retrieval using memetic algorithm. Egypt J Basic Appl Sci 4:112–122

    Google Scholar 

  5. Belalia A, Belloulata K, Kpalma K (2016) Region-based image retrieval in the compressed domain using shape-adaptive DCT. Multimed Tools Appl 75(17):10175–10199

    Google Scholar 

  6. Belarbi MA, Mahmoudi S, Belalem G (2017) PCA as dimensionality reduction for large-scale image retrieval systems. International Journal of Ambient Computing and Intelligence (IJACI) 8(4):45–58

    Google Scholar 

  7. Belloulata K, Belallouche L, Belalia A, Kpalma K (2014) Region based image retrieval using shape-adaptive dct. In: signal and information processing (ChinaSIP), 2014 IEEE China Summit & International Conference on (pp. 470-474). IEEE

  8. Belloulata K, Belallouche L, Belalia A, Kpalma K (2014) Region based image retrieval using shape-adaptive dct. In: 2014 IEEE China Summit & International Conference on signal and information processing (ChinaSIP) (pp. 470-474). IEEE

  9. Boutell M, Luo J (2004, June) A generalized temporal context model for semantic scene classification. In: 2004 Conference on Computer Vision and Pattern Recognition Workshop (pp. 104-104). IEEE

  10. Chang X, Ma Z, Yi Y, Zeng Z, Hauptmann AG (2016) Bi-level semantic representation analysis for multimedia event detection. IEEE Trans Cybern 47(5):1180–1197

    Google Scholar 

  11. Charles YR, Ramraj R (2016) A novel local mesh color texture pattern for image retrieval system. AEU Int. J. Electron. Commun. 70(3):225–233

    Google Scholar 

  12. Chen, J., Kellokumpu, V., Zhao, G., & Pietikäinen, M. (2013). RLBP: robust local binary pattern. In BMVC.

  13. Cheng Z, Chang X, Zhu L, Kanjirathinkal RC, Kankanhalli M (2019) Mmalfm: explainable recommendation by leveraging reviews and images. ACM Trans Inf Syst (TOIS) 37(2):16

    Google Scholar 

  14. Chu WT, Chen CH (2012, June) Color CENTRIST: a color descriptor for scene categorization. In: proceedings of the 2nd ACM international conference on multimedia retrieval (pp. 1-8)

    Google Scholar 

  15. Datta R, Joshi D, Li J, Wang JZ (2008) Image retrieval: ideas, influences, and trends of the new age. ACM Computing Surveys (Csur) 40(2):1–60

    Google Scholar 

  16. Dey, N., Ashour, A., & Patra, P. K. (Eds.). (2016). Feature detectors and motion detection in video processing. IGI Global.

  17. Dey S, Dutta A, Ghosh SK, Valveny E, Lladós J, Pal U (2018) Learning cross-modal deep embeddings for multi-object image retrieval using text and sketch. In: 2018 24th international conference on pattern recognition (ICPR) (pp. 916-921). IEEE

  18. Douik A, Abdellaoui M, Kabbai L (2016) Content based image retrieval using local and global features descriptor. In: advanced Technologies for Signal and Image Processing (ATSIP), 2016 2nd international conference on (pp. 151-154). IEEE

  19. Douik A, Abdellaoui M, Kabbai L (2016, March) Content based image retrieval using local and global features descriptor. In: 2016 2nd international conference on advanced Technologies for Signal and Image Processing (ATSIP) (pp. 151-154). IEEE

  20. Farhidzadeh, H., Kim, J. Y., Scott, J. G., Goldgof, D. B., Hall, L. O., & Harrison, L. B. (2016). Classification of progression free survival with nasopharyngeal carcinoma tumors. In medical imaging 2016: computer-aided diagnosis (Vol. 9785, p. 97851I). International Society for Optics and Photonics.

  21. Gao Z, Wang DY, Wan SH, Zhang H, Wang YL (2019) Cognitive-inspired class-statistic matching with triple-constrain for camera free 3d object retrieval. Futur Gener Comput Syst 94:641–653

    Google Scholar 

  22. Giveki D, Soltanshahi MA, Montazer GA (2017) A new image feature descriptor for content based image retrieval using scale invariant feature transform and local derivative pattern. Optik 131:242–254

    Google Scholar 

  23. Goodrum AA (2000) Image information retrieval: an overview of current research. Inf Sci 3(2):63–66

    Google Scholar 

  24. Han J, Ma KK (2007) Rotation-invariant and scale-invariant Gabor features for texture image retrieval. Image Vis Comput 25(9):1474–1481

    Google Scholar 

  25. Hassanien AE, Tolba F (2016) Applications of intelligent optimization in biology and medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-21212-8

    Book  Google Scholar 

  26. He Z, You X, Yuan Y (2009) Texture image retrieval based on non-tensor product wavelet filter banks. Signal Process 89(8):1501–1510

    MATH  Google Scholar 

  27. Hoi SC, Jin R, Zhu J, Lyu MR (2009) Semisupervised SVM batch mode active learning with applications to image retrieval. ACM Transactions on Information Systems (TOIS) 27(3):1–29

    Google Scholar 

  28. Jolliffe T (1986) Principal component analysis, ACM Computing Surveys. Springer-Verlag, pp 1–47

  29. Junling L, HongWei Z, Degang K, Chongxu C (2011, August) Image retrieval based on weighted blocks and color feature. In: 2011 International Conference on Mechatronic Science, Electric Engineering and Computer (MEC) (pp. 921-924). IEEE

  30. Kastner S, Ungerleider LG (2001) The neural basis of biased competition in human visual cortex. Neuropsychologia 39(12):1263–1276

    Google Scholar 

  31. Kumar A, Kim J, Cai W, Fulham M, Feng D (2013) Content-based medical image retrieval: a survey of applications to multidimensional and multimodality data. J Digit Imaging 26(6):1025–1039

    Google Scholar 

  32. Lazebnik S, Schmid C, Ponce J (2006, June) Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In: 2006 IEEE computer society conference on computer vision and pattern recognition (CVPR'06) (Vol. 2, pp. 2169-2178). IEEE

  33. Liapis S, Tziritas G (2004) Color and texture image retrieval using chromaticity histograms and wavelet frames. IEEE Transactions on multimedia 6(5):676–686

    Google Scholar 

  34. Lin CH, Lin WC (2010) Image retrieval system based on adaptive color histogram and texture features. Comput J 54(7):1136–1147

    Google Scholar 

  35. Lin CH, Chen RT, Chan YK (2009) A smart content-based image retrieval system based on color and texture feature. Image Vis Comput 27(6):658–665

    Google Scholar 

  36. Lin CH, Chen HY, Wu YS (2014) Study of image retrieval and classification based on adaptive features using genetic algorithm feature selection. Expert Syst Appl 41(15):6611–6621

    Google Scholar 

  37. Liu GH, Yang JY (2013) Content-based image retrieval using color difference histogram. Pattern Recogn 46(1):188–198

    Google Scholar 

  38. Liu P, Jia K, Zhang P (2006) An effective method of imahe retrieval based on modified fuzzy c-means clustering scheme. In: signal processing, 2006 8th international conference on (Vol. 3). IEEE

  39. Liu Y, Zhang D, Lu G (2008) Region-based image retrieval with high-level semantics using decision tree learning. Pattern Recogn 41(8):2554–2570

    MATH  Google Scholar 

  40. Liu GH, Zhang L, Hou YK, Li ZY, Yang JY (2010) Image retrieval based on multi-texton histogram. Pattern Recogn 43(7):2380–2389

    MATH  Google Scholar 

  41. Liu GH, Li ZY, Zhang L, Xu Y (2011) Image retrieval based on micro-structure descriptor. Pattern Recogn 44(9):2123–2133

    Google Scholar 

  42. Liu GH, Yang JY, Li Z (2015) Content-based image retrieval using computational visual attention model. Pattern Recogn 48(8):2554–2566

    Google Scholar 

  43. Livingstone MS, Hubel DH (1984) Anatomy and physiology of a color system in the primate visual cortex. J Neurosci 4(1):309–356

    Google Scholar 

  44. Long F, Zhang H, Feng DD (2003) Fundamentals of content-based image retrieval. In: multimedia information retrieval and management (pp. 1–26). Springer, Berlin, Heidelberg

    Google Scholar 

  45. Loupias E, Sebe N, Bres S, Jolion JM (2000) Wavelet-based salient points for image retrieval. In: image processing, 2000. Proceedings. 2000 international conference on (Vol. 2, pp. 518-521). IEEE

  46. Ma Z, Chang X, Xu Z, Sebe N, Hauptmann AG (2017) Joint attributes and event analysis for multimedia event detection. IEEE Trans Neural Netw Learn Syst 29(7):2921–2930

    MathSciNet  Google Scholar 

  47. Marée R, Geurts P, Wehenkel L (2007, November) Content-based image retrieval by indexing random subwindows with randomized trees. In: Asian Conference on Computer Vision (pp. 611-620). Springer, Berlin, Heidelberg

    Google Scholar 

  48. Mehta R, Egiazarian K (2016) Dominant rotated local binary patterns (DRLBP) for texture classification. Pattern Recogn Lett 71:16–22

    Google Scholar 

  49. Mistry Y, Ingole DT, Ingole MD (2018) Content based image retrieval using hybrid features and various distance metric. Journal of Electrical Systems and Information Technology 5(3):874–888

    Google Scholar 

  50. Moon YS, Oh JB (1999) Content-based image retrieval based on scale-space theory. IEICE Trans Fundam Electron Commun Comput Sci 82(6):1026–1028

    Google Scholar 

  51. Murala S, Maheshwari R, Balasubramanian R (2012) Local tetra patterns: a new feature descriptor for content-based image retrieval. IEEE Trans Image Process 21(5):2874–2886

    MathSciNet  MATH  Google Scholar 

  52. Nachtegael M, Van der Weken D, De Witte V, Schulte S, Mélange T, Kerre EE (2007) Color image retrieval using fuzzy similarity measures and fuzzy partitions. In: image processing, 2007. ICIP 2007. IEEE international conference on (Vol. 6, pp. VI-13). IEEE

  53. Nandi D, Ashour AS, Samanta S, Chakraborty S, Salem MA, Dey N (2015) Principal component analysis in medical image processing: a study. International Journal of Image Mining 1(1):65–86

    Google Scholar 

  54. Ogle V, Stonebraker M (1995) Chabot: retrieval from a relational database of images. IEEE Computer 28(9):40–48

    Google Scholar 

  55. Ojala T, Pietikainen M, Maenpaa T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987

    MATH  Google Scholar 

  56. Ojala T, Pietikainen M, Maenpaa T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987

    MATH  Google Scholar 

  57. Polito M, Perona P (2002) Grouping and dimensionality reduction by locally linear embedding. In: advances in neural information processing systems (pp. 1255-1262)

    Google Scholar 

  58. Radwan AA, Latef BAA, Ali AMA, Sadek OA (2008) Using genetic algorithm to improve information retrieval systems. World Acad Sci Eng Technol 17:1021–1027

    Google Scholar 

  59. Rocchio, JJ (1966). Document Retrieval System-Optimization and Evaluation. PhD thesis, Harvard.

  60. Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500):2323–2326

    Google Scholar 

  61. Sagarmay, D. (2004). Multimedie systems and content-based image retrieval, idea group publishing ©, ISBN: 1591402654.

  62. Sajjad M, Ullah A, Ahmad J, Abbas N, Rho S, Baik SW (2018) Integrating salient colors with rotational invariant texture features for image representation in retrieval systems. Multimed Tools Appl 77(4):4769–4789

    Google Scholar 

  63. Sathiamoorthy S, Natarajan M (2020) An efficient content based image retrieval using enhanced multi-trend structure descriptor. SN Applied Sciences 2(2):217

    Google Scholar 

  64. Singh, S., Batra, S. (2020). An efficient bi-layer content based image retrieval system. Multimed Tools Appl https://doi.org/10.1007/s11042-019-08401-7

  65. Smeulders AW, Worring M, Santini S, Gupta A, Jain R (2000) Content-based image retrieval at the end of the early years. IEEE Trans Pattern Anal Mach Intell 22(12):1349–1380

    Google Scholar 

  66. Smeulders AW, Worring M, Santini S, Gupta A, Jain R (2000) Content-based image retrieval at the end of the early years. IEEE Trans Pattern Anal Mach Intell 22(12):1349–1380

    Google Scholar 

  67. Smeulders AWM, Worring M, Santini S, Gupta A, Jain R (2000) Contentbased image retrieval at the end of the early years. IEEE Trans Pattern Anal Mach Intell 22(12):1349–1379

    Google Scholar 

  68. Stricker M, Orengo M (1995) Similarity of color images. In: Proceeding of the SPIE storage and retrieval for image and video databases, San Jose, pp 381–392.

  69. Takala V, Ahonen T, Pietikäinen M (2005, June) Block-based methods for image retrieval using local binary patterns. In: Scandinavian conference on image analysis (pp. 882-891). Springer, Berlin, Heidelberg

    Google Scholar 

  70. Tzagkarakis G, Beferull-Lozano B, Tsakalides P (2008) Rotation-invariant texture retrieval via signature alignment based on steerable sub-Gaussian modeling. IEEE Trans Image Process 17(7):1212–1225

    MathSciNet  Google Scholar 

  71. Van de Wouwer G, Scheunders P, Van Dyck D (1999) Statistical texture characterization from discrete wavelet representations. IEEE Trans Image Process 8(4):592–598

    Google Scholar 

  72. Vasconcelos N (2007) From pixels to semantic spaces: advances in content-based image retrieval. Computer 7(2007):20–26

    Google Scholar 

  73. Vatamanu OA, Frandes M, Ionescu M, Apostol S (2013, November) Content-based image retrieval using local binary pattern, intensity histogram and color coherence vector. In: 2013 E-Health and Bioengineering Conference (EHB) (pp. 1-6). IEEE

  74. Walia E, Pal A (2014) Fusion framework for effective color image retrieval. J Vis Commun Image Represent 25(6):1335–1348

    Google Scholar 

  75. Wang X, Wang Z (2013) A novel method for image retrieval based on structure elements descriptor. J Vis Commun Image Represent 24(1):63–74

    Google Scholar 

  76. Wang Y, Pan Z, Yuan X, Yang C, Gui W (2020) A novel deep learning based fault diagnosis approach for chemical process with extended deep belief network. ISA Trans. 96:457–467

    Google Scholar 

  77. Wu, Q. (2019). Image retrieval method based on deep learning semantic feature extraction and regularization softmax. Multimedia tools and applications, 1-15.

  78. Wu J, Rehg JM (2010) Centrist: A visual descriptor for scene categorization. IEEE Trans Pattern Anal Mach Intell 33(8):1489–1501

    Google Scholar 

  79. Xu Y, Gong J, Xiong L, Xu Z, Wang J, Shi YQ (2017) A privacy-preserving content-based image retrieval method in cloud environment. J Vis Commun Image Represent 43:164–172

    Google Scholar 

  80. Yang X, Cai L (2014) Adaptive region matching for region-based image retrieval by constructing region importance index. IETComput Vis 8(2):141–151

    Google Scholar 

  81. Yanping D, Wang JZ (2001) A scalable integrated region-based image retrieval system. In: proceedings ICIP-01 (IEEE international conference on image processing), vol. I, pp 22–25

    Google Scholar 

  82. Yu J, Qin Z, Wan T, Zhang X (2013) Feature integration analysis of bag-of-features model for image retrieval. Eurocomputing 120:355–364

    Google Scholar 

  83. Yuan X, Li L, Wang Y (2020) Nonlinear dynamic soft sensor modeling with supervised long short-term memory network. IEEE Trans. Ind. Inf. 16(5):3168–3176

    Google Scholar 

  84. Yuan X, Zhou J, Huang B, Wang Y, Yang C, Gui W (2020) Hierarchical quality-relevant feature representation for soft sensor modeling: a novel deep learning strategy. IEEE Trans. Ind. Inf. 16(6):3721–3730

    Google Scholar 

  85. Yue J, Li Z, Liu L, Fu Z (2011) Content-based image retrieval using color and texture fused features. Math Comput Model 54(3–4):1121–1127

    Google Scholar 

  86. Yue J, Li Z, Liu L, Fu Z (2011) Content-based image retrieval using color and texture fused features. Math Comput Model 54(3–4):1121–1127

    Google Scholar 

  87. Zabih R, Woodfill J (1994, May) Non-parametric local transforms for computing visual correspondence. In: European conference on computer vision (pp. 151-158). Springer, Berlin, Heidelberg

    Google Scholar 

  88. Zhang L, Zhang J (2017) Synchronous prediction of arousal and valence using LSTM network for affective video content analysis. In: 2017 13th international conference on natural computation, fuzzy systems and knowledge discovery (ICNC-FSKD) (pp. 727-732). IEEE

  89. Zhang X, Dou H, Ju T, Xu J, Zhang S (2015) Fusing heterogeneous features from stacked sparse autoencoder for histopathological image analysis. IEEE J. Biomed. Health Inform. 20(5):1377–1383

    Google Scholar 

  90. Zhou J, Xu T, Gao W (2014) Content based image retrieval using local directional pattern and color histogram. In: optimization and control techniques and applications (pp. 197–211). Springer, Berlin, Heidelberg

    Google Scholar 

  91. Zhou J, Liu X, Liu W, Gan J (2019) Image retrieval based on effective feature extraction and diffusion process. Multimed Tools Appl 78(5):6163–6190

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sakineh Asghari Aghjeh Dizaj.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Danapur, N., Dizaj, S.A.A. & Rostami, V. An efficient image retrieval based on an integration of HSV, RLBP, and CENTRIST features using ensemble classifier learning. Multimed Tools Appl 79, 24463–24486 (2020). https://doi.org/10.1007/s11042-020-09109-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-020-09109-9

Keywords

Navigation