Skip to main content
Log in

Color image analysis of quaternion discrete radial Krawtchouk moments

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In this work, we suggest a new set of quaternion discrete radial Krawtchouk moments (QDRKMs) for color image reconstruction and classification. These new discrete moments are represented over a disk by using discrete orthogonal radial Krawtchouk moments. The use of Quaternion discrete moments for color image eliminates the discretization errors produced when the Quaternion continuous moments are used. Furthermore, this approach is suggested for highly accurate calculation of QDRKMs in polar coordinates where the kernel is exactly calculated by over circular color pixels. The translation, scaling, and rotation (TSR) invariances for QDRKMs are proved. Theoretical analysis and numerical experiments investigation were shown in terms of the performance description of TSR invariances, classification and robustness to different noises of the QDRKMs compared with continuous quaternion Legendre–Fourier moments using COIL 100 database.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2:
Fig. 3:
Fig. 4
Fig. 5
Fig. 6.
Fig 7
Fig. 8
Fig. 9
Fig. 10:

Similar content being viewed by others

References

  1. Amakdouf H, El Mallahi M, Zouhri A, Qjidaa H (2018) Classification and recognition of 3D image of charlier moments using a multilayer perceptron architecture. Procedia Computer Science 127(2018):226–235

    Article  Google Scholar 

  2. Cao L, Zhi R, Jin Y (2018) Translation and scale invariants of krawtchouk moments. Inf Process Lett 130(C):30–35

    MathSciNet  MATH  Google Scholar 

  3. Chen B, Shu H, Zhang H, Chen G, Luo L (2010) Color image analysis by quaternion zernike moments. In: Proceedings - international conference on pattern recognition

    Google Scholar 

  4. Chen BJ, Shu HZ, Zhang H, Chen G, Toumoulin C, Dillenseger JL, Luo LM (2012) Quaternion Zernike moments and their invariants for color image analysis and object recognition. Signal Process 92:308–318. https://doi.org/10.1016/j.sigpro.2011.07.018

    Article  Google Scholar 

  5. Chen B, Shu H, Coatrieux G, Chen G, Sun X, Coatrieux JL (2014) Color image analysis by quaternion-type moments. J Math Imaging Vis

  6. Chen B, Qi X, Sun X, Shi YQ (2017) Quaternion pseudo-Zernike moments combining both of RGB information and depth information for color image splicing detection. J Vis Commun Image Represent 49:283–290. https://doi.org/10.1016/j.jvcir.2017.08.011

    Article  Google Scholar 

  7. El Mallahi M, Mesbah A, El Fadili H, Zenkouar K, and Qjidaa H. (2014) Compact computation of krawtchouk moments for 3D object representation. WSEAS transactions on circuits and systems E-ISSN: 2224-266X,13.

  8. El Mallahi M, Mesbah A, El Fadili H, Zenkouar K, et H. Qjidaa. (2015) Translation and scale invariants of three-dimensional Krawtchouk moments, IEEE 2015 intelligent systems and computer vision, ISCV .

  9. El Mallahi M, Mesbah A, Qjidaa H. (2016). “An algorithm for fast computation of 3D Krawtchouk moments for volumetric image reconstruction”, Proceedings of the Mediterranean Conference on Information & Communication Technologies 2015 pp 267-276

  10. El Mallahi M, Mesbah A, El Fadili H, Zenkouar K, et Qjidaa H (2016) “Volumetric image reconstruction by 3D hahn moments.” 2015 ieee/acs 12th international conference of computer systems and applications (AICCSA).

  11. El Mallahi M, Mesbah A, Qjidaa H (2016) “Fast algorithm for 3D local feature extraction using Hahn and Charlier moments” advances in ubiquitous networking 2, Lecture notes in electrical engineering, vol 397. Springer, Singapore

    Google Scholar 

  12. El Mallahi M, Zouhri A, EL-mekkaoui J, Qjidaa H (2017) Three dimensional radial Krawtchouk moment invariants for volumetric image recognition. Pattern Recognit Image Anal 27(4):810–824

    Article  Google Scholar 

  13. El Mallahi, M. et al. (2017) ‘Three dimensional radial tchebichef moment invariants for volumetric image recognition’, Pattern Recognition and Image Analysis

  14. El Mallahi M, Zouhri A, Mekkaoui J and Qjidaa H (2017) “Radial Meixner moments for rotational invariant pattern recognition”, IEEE 2017 intelligent systems and computer vision, ISCV .

    Google Scholar 

  15. El Mallahi, M. et al. (2017) Radial charlier moment invariants for 2D object/image recognition, in international conference on multimedia computing and systems -proceedings

  16. El Mallahi M, Zouhri A, Amakdouf H, Qjidaa H (2018) Rotation scaling and translation invariants of 3D radial shifted Legendre moments. Springer, International Journal of Automation and Computing, Springer, April 2018 15(2):169–180

    Google Scholar 

  17. M. El Mallahi, A. Mesbah, et H. Qjidaa. (2018).“3D radial invariant of dual hahn moments.” Springer, Neural Computing and Applications. , Vol. 30, Issue 7, pp 2283–22.

  18. El Mallahi M, Zouhri A, Mesbah A, El Affar I, Qjidaa H (2018) Radial invariant of 2D and 3D Racah moments. Springer, Multimedia Tools and Applications An International Journal 77(6):6583–6604

    Article  Google Scholar 

  19. Mesbah A, El Mallahi M, Qjidaa H (2016) “Fast and efficient computation of three-dimensional Hahn moments” SPIE. Journal of electronic imaging 25(6):061621

    Article  Google Scholar 

  20. Mesbah A, Zouhri A, El Mallahi M, Qjidaa H. (2017).“Robust reconstruction and generalized dual hahn moments invariants extraction for 3d images” spriger, 3D Research Center, Kwangwoon University and Springer-Verlag Berlin Heidelberg, vol. 8, num. 7, Issues 29

  21. Mukundan, R. (2012) ‘A comparative analysis of radial-Tchebichef moments and Zernike moments’, in. doi: https://doi.org/10.5244/c.23.16.

  22. Wang XY, Li WY, Yang HY, Wang P, Li YW (2015) Quaternion polar complex exponential transform for invariant color image description. Appl Math Comput 256:951–967. https://doi.org/10.1016/j.amc.2015.01.075

    Article  MathSciNet  MATH  Google Scholar 

  23. Xiang-Yang W, Wei-Yi L, Hong-Ying Y, Pan-Pan N, Yong-Wei L (2015) Invariant quaternion radial harmonic Fourier moments for color image retrieval. Opt Laser Technol 66:78–88. https://doi.org/10.1016/j.optlastec.2014.07.020

    Article  Google Scholar 

  24. Xiao B, Ma JF, Cui JT (2012) Radial Tchebichef moment invariants for image recognition. J Vis Commun Image Represent 23:381–386

    Article  Google Scholar 

  25. Xiao B, Wang GY, and Li WS (2014) Radial shifted legendre moments for image analysis and invariant image recognition Image Vis. Comput.

  26. Xiao B, Zhang Y, Li L, Weisheng L, Wang G (2016) Explicit Krawtchouk moment invariants for invariant image recognition. J Electron Imaging 25(2):023002

    Article  Google Scholar 

Download references

Acknowledgements

I would like to express my deep gratitude to Dr. Amal Zouhri, for her advice and assistance in keeping my progress on schedule. I would also like to thank Professor Mostafa EL MALLAHI and Professor Hassan Qjidaa, my research supervisors, for their patient guidance, enthusiastic encouragement and useful critiques of this research work. Finally, I wish to thank my parents for their support and encouragement throughout my study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hicham Amakdouf.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amakdouf, H., Zouhri, A., EL Mallahi, M. et al. Color image analysis of quaternion discrete radial Krawtchouk moments. Multimed Tools Appl 79, 26571–26586 (2020). https://doi.org/10.1007/s11042-020-09120-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-020-09120-0

Keywords

Navigation