Skip to main content
Log in

Detecting helicobacter pylori in whole slide images via weakly supervised multi-task learning

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Due to the difficulty to accurately define the morphologies of Helicobacter Pylori (H. pylori) and the complexity of dealing with the whole slide images (WSIs), no computer-aided solution has currently been presented for detecting H. pylori infection in WSIs. We present the first image semantic segmentation solution for the computer-aided detection of H. pylori in WSIs. The solution only requires polygon annotations as weak supervision, which roughly, instead of pixel-level accurately, label the H. pylori infected areas in WSIs. We propose a new weakly supervised multi-task learning framework (WSMLF) that aims to improve the segmentation performance by more effectively exploiting the weak supervision. To make more effective usage of the weak supervision, we extract multiple inaccurate targets representing different modes of the true target from the available weak annotations. For improvement of the segmentation performance, we design a weakly supervised multi-task learning algorithm that can automatically learn from the weighted summarization of the extracted multiple inaccurate targets. These two advances constitute the resulting technique WSMLF. Introducing the proposed WSMLF to several common deep image semantic segmentation approaches for the detection of H. pylori in WSIs, we observe that WSMLF can enable these approaches to achieve more reasonable segmentation results, which eventually improve the detection performance of H. pylori by at most 6%. WSMLF provides new thoughts for more effectively employing weak supervision to achieve more effective results for image semantic segmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Ahn J, Kwak S (2018) Learning pixel-level semantic affinity with image-level supervision for weakly supervised semantic segmentation. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, In

    Book  Google Scholar 

  2. Andermatt S, Pezold S, Cattin P (2016) Multi-dimensional gated recurrent units for the segmentation of biomedical 3D-data. In: lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics). Pp 142–151

  3. Badrinarayanan V, Kendall A, Cipolla R (2017) SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans Pattern Anal Mach Intell 39:2481–2495. https://doi.org/10.1109/TPAMI.2016.2644615

    Article  Google Scholar 

  4. Baxter J (1997) A Bayesian/information theoretic model of learning to learn via multiple task sampling. Mach Learn 28:7–39. https://doi.org/10.1023/A:1007327622663

    Article  MATH  Google Scholar 

  5. Bell S, Upchurch P, Snavely N, Bala K (2015) Material recognition in the wild with the Materials in Context Database. In: 2015 IEEE conference on computer vision and pattern recognition (CVPR). IEEE, pp 3479–3487

  6. Bian X, Lim SN, Zhou N (2016) Multiscale fully convolutional network with application to industrial inspection. In: 2016 IEEE winter conference on applications of computer vision (WACV). IEEE, pp 1–8

  7. Bottou L (2010) Large-scale machine learning with stochastic gradient descent. In: proceedings of COMPSTAT’2010

  8. Caruana RA (1993) Multitask learning: a knowledge-based source of inductive bias. In: machine learning proceedings 1993. Elsevier, pp 41–48

  9. Caruana R (1997) Multitask Learning. Mach Learn 1:41–75. https://doi.org/10.1023/A:1007379606734

    Article  Google Scholar 

  10. Chen L-C, Papandreou G, Kokkinos I, Murphy K, Yuille AL (2018) DeepLab: semantic image segmentation with deep convolutional nets, Atrous convolution, and fully connected CRFs. IEEE Trans Pattern Anal Mach Intell 40:834–848. https://doi.org/10.1109/TPAMI.2017.2699184

    Article  Google Scholar 

  11. Chen L-C, Zhu Y, Papandreou G et al (2018) Encoder-decoder with Atrous separable convolution for semantic image segmentation. Pertanika Journal of Tropical Agricultural Science, In, pp 833–851

    Google Scholar 

  12. Cicek O, Abdulkadir A, Lienkamp SS et al (2016) Medical image computing and computer-assisted intervention – MICCAI 2016. Springer International Publishing, Cham

    Google Scholar 

  13. Cutler AF, Havstad S, Ma CK, Blaser MJ, Perez-Perez GI, Schubert TT (1995) Accuracy of invasive and noninvasive tests to diagnose helicobacter pylori infection. Gastroenterology 109:136–141. https://doi.org/10.1016/0016-5085(95)90278-3

  14. Dolz J, Gopinath K, Yuan J, Lombaert H, Desrosiers C, Ben Ayed I (2019) HyperDense-net: a hyper-densely connected CNN for multi-modal image segmentation. IEEE Trans Med Imaging 38:1116–1126. https://doi.org/10.1109/TMI.2018.2878669

    Article  Google Scholar 

  15. Drozdzal M, Vorontsov E, Chartrand G, et al (2016) The importance of skip connections in biomedical image segmentation. In: lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics). Pp 179–187

  16. Duchi J, Hazan E, Singer Y (2010) Adaptive subgradient methods for online learning and stochastic optimization. In: COLT 2010 - the 23rd conference on learning theory

  17. Duong L, Cohn T, Bird S, Cook P (2015) Low resource dependency parsing: cross-lingual parameter sharing in a neural network parser. In: Proceedings of the 53rd annual meeting of the Association for Computational Linguistics and the 7th international joint conference on natural language processing (volume 2: short papers). Association for Computational Linguistics, Stroudsburg, PA, USA, pp 845–850

    Google Scholar 

  18. Fan D-P, Ji G-P, Sun G, Cheng M-M, Jianbing Shen LS (2020) Camouflaged object detection. CVPR, In

    Book  Google Scholar 

  19. Ford AC, Forman D, Hunt R et al (2015) Helicobacter pylori eradication for the prevention of gastric neoplasia. In: Moayyedi P (ed) Cochrane database of systematic reviews. John Wiley & Sons, Ltd, Chichester, UK

    Google Scholar 

  20. Foulds J, Frank E (2010) A review of multi-instance learning assumptions. In: A review of multi-instance learning assumptions. Knowl. Eng, Rev

    Chapter  Google Scholar 

  21. Frénay B, Verleysen M (2014) Classification in the presence of label noise: a survey. IEEE Trans Neural Networks Learn Syst 25:845–869. https://doi.org/10.1109/TNNLS.2013.2292894

    Article  MATH  Google Scholar 

  22. Gao W, Wang L, Li YF, Zhou ZH (2016) Risk minimization in the presence of label noise. In: 30th AAAI conference on artificial intelligence, AAAI 2016

  23. Garcia-Garcia A, Orts-Escolano S, Oprea S, Villena-Martinez V, Martinez-Gonzalez P, Garcia-Rodriguez J (2018) A survey on deep learning techniques for image and video semantic segmentation. Appl Soft Comput 70:41–65. https://doi.org/10.1016/j.asoc.2018.05.018

    Article  Google Scholar 

  24. Ghosh S, Das N, Das I, Maulik U (2019) Understanding deep learning techniques for image segmentation. ACM Comput Surv 52:1–35. https://doi.org/10.1145/3329784

    Article  Google Scholar 

  25. Greenspan H, van Ginneken B, Summers RM (2016) Guest editorial deep learning in medical imaging: overview and future promise of an exciting new technique. IEEE Trans Med Imaging 35:1153–1159. https://doi.org/10.1109/TMI.2016.2553401

    Article  Google Scholar 

  26. He K, Zhang X, Ren S, Sun J (2016) Deep Residual Learning for Image Recognition. In: 2016 IEEE conference on computer vision and pattern recognition (CVPR). IEEE, pp 770–778

  27. Ishizawa T, Mitsuhashi Y, Sugiki H, Hashimoto H, Kondo S (1998) Basal cell carcinoma within vulvar Paget’s disease. Dermatology 197:388–390. https://doi.org/10.1159/000018039

    Article  Google Scholar 

  28. Kingma DP, Ba JL (2015) Adam: a method for stochastic gradient descent. ICLR Int Conf Learn Represent

    Google Scholar 

  29. Korez R, Likar B, Pernuš F, Vrtovec T (2016) Model-based segmentation of vertebral bodies from MR images with 3D CNNs. In: lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics). Pp 433–441

  30. Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems, In, pp 1097–1105

    Google Scholar 

  31. Le TN, Nguyen TV, Nie Z et al (2019) Anabranch network for camouflaged object segmentation. Comput Vis Image Underst 184:45–56. https://doi.org/10.1016/j.cviu.2019.04.006

    Article  Google Scholar 

  32. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436–444. https://doi.org/10.1038/nature14539

    Article  Google Scholar 

  33. Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, van der Laak JAWM, van Ginneken B, Sánchez CI (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88. https://doi.org/10.1016/j.media.2017.07.005

    Article  Google Scholar 

  34. Liu Y, Cheng M-M, Fan D-P, et al (2018) Semantic edge detection with diverse deep supervision. arXiv.org

  35. Mehta S, Rastegari M, Shapiro L, Hajishirzi H (2019) ESPNetv2: a light-weight, power efficient, and general purpose convolutional neural network. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, In

    Google Scholar 

  36. Mentis A, Lehours P, Mégraud F (2015) Epidemiology and diagnosis of helicobacter pylori infection. Helicobacter 20:1–7. https://doi.org/10.1111/hel.12250

    Article  Google Scholar 

  37. Milletari F, Navab N, Ahmadi S-A (2016) V-net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 fourth international conference on 3D vision (3DV). IEEE, pp 565–571

  38. O’Connor A, O’Morain CA, Ford AC (2017) Population screening and treatment of helicobacter pylori infection. Nat Rev Gastroenterol Hepatol 14:230–240. https://doi.org/10.1038/nrgastro.2016.195

    Article  Google Scholar 

  39. Pinheiro PO, Lin T-Y, Collobert R, Dollár P (2016) Learning to refine object segments. In: lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics). Pp 75–91

  40. Rajchl M, Lee MCH, Oktay O, Kamnitsas K, Passerat-Palmbach J, Bai W, Damodaram M, Rutherford MA, Hajnal JV, Kainz B, Rueckert D (2017) DeepCut: object segmentation from bounding box annotations using convolutional neural networks. IEEE Trans Med Imaging 36:674–683. https://doi.org/10.1109/TMI.2016.2621185

    Article  Google Scholar 

  41. Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics). Pp 234–241

  42. Ruder S (2017) An overview of multi-task learning in deep neural networks. arXiv.org

  43. Saha M, Chakraborty C (2018) Her2Net: a deep framework for semantic segmentation and classification of cell membranes and nuclei in breast Cancer evaluation. IEEE Trans Image Process 27:2189–2200. https://doi.org/10.1109/TIP.2018.2795742

    Article  MathSciNet  MATH  Google Scholar 

  44. Settles B (2010) Active learning literature survey. Mach Learn 10.1.1.167.4245

  45. Shelhamer E, Long J, Darrell T (2017) Fully convolutional networks for semantic segmentation. IEEE Trans Pattern Anal Mach Intell 39:640–651. https://doi.org/10.1109/TPAMI.2016.2572683

    Article  Google Scholar 

  46. Shi M, Ferrari V (2016) Weakly supervised object localization using size estimates. In: lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics)

  47. Shichijo S, Hirata Y, Sakitani K, Yamamoto S, Serizawa T, Niikura R, Watabe H, Yoshida S, Yamada A, Yamaji Y, Ushiku T, Fukayama M, Koike K (2015) Distribution of intestinal metaplasia as a predictor of gastric cancer development. J Gastroenterol Hepatol 30:1260–1264. https://doi.org/10.1111/jgh.12946

    Article  Google Scholar 

  48. Shichijo S, Nomura S, Aoyama K, Nishikawa Y, Miura M, Shinagawa T, Takiyama H, Tanimoto T, Ishihara S, Matsuo K, Tada T (2017) Application of convolutional neural networks in the diagnosis of helicobacter pylori infection based on endoscopic images. EBioMedicine 25:106–111. https://doi.org/10.1016/j.ebiom.2017.10.014

    Article  Google Scholar 

  49. Shuai B, Zuo Z, Wang B, Wang G (2016) DAG-Recurrent Neural Networks for Scene Labeling. In: 2016 IEEE conference on computer vision and pattern recognition (CVPR). IEEE, pp 3620–3629

  50. Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv.org

  51. Singh SK, Dhawale CA, Misra S (2013) Survey of object detection methods in camouflaged image. IERI Procedia 4:351–357. https://doi.org/10.1016/j.ieri.2013.11.050

    Article  Google Scholar 

  52. Stenström B, Mendis A, Marshall B (2008) Helicobacter pylori: the latest in diagnosis and treatment. Aust Fam Physician 37:608–612

    Google Scholar 

  53. Szegedy C, Wei Liu, Yangqing Jia, et al (2015) Going deeper with convolutions. In: 2015 IEEE conference on computer vision and pattern recognition (CVPR). IEEE, pp 1–9

  54. Wang L, Hua G, Sukthankar R, Xue J, Niu Z, Zheng N (2017) Video object discovery and co-segmentation with extremely weak supervision. IEEE Trans Pattern Anal Mach Intell 39:2074–2088. https://doi.org/10.1109/TPAMI.2016.2612187

    Article  Google Scholar 

  55. Warthin AS, Starry AC (1922) The staining of spirochetes in cover-glass smears by the silver-agar method. J Infect Dis 30:592–600. https://doi.org/10.1093/infdis/30.6.592

    Article  Google Scholar 

  56. Yang Y, Hospedales TM (2016) Trace norm regularised deep multi-task learning. arXiv.org

  57. Yang Y, Chen N, Jiang S (2018) Collaborative strategy for visual object tracking. Multimed Tools Appl 77:7283–7303. https://doi.org/10.1007/s11042-017-4633-x

    Article  Google Scholar 

  58. Yang M, Yu K, Zhang C et al (2018) DenseASPP for semantic segmentation in street scenes. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, In

    Book  Google Scholar 

  59. Yang Y, Wu Y, Chen N (2019) Explorations on visual localization from active to passive. Multimed Tools Appl 78:2269–2309. https://doi.org/10.1007/s11042-018-6347-0

    Article  Google Scholar 

  60. Yang Y, Lv H, Chen N et al (2020) FTBME: feature transferring based multi-model ensemble. Multimed Tools Appl. https://doi.org/10.1007/s11042-020-08746-4

  61. Yu F, Koltun V (2015) Multi-scale context aggregation by dilated convolutions. arXiv.org

  62. Zeiler MD, Fergus R (2014) Visualizing and understanding convolutional networks. Proceedings of European conference on computer vision–ECCV 2014:818–833

    Google Scholar 

  63. Zhao B, Feng J, Wu X, Yan S (2017) A survey on deep learning-based fine-grained object classification and semantic segmentation. Int J Autom Comput 14:119–135. https://doi.org/10.1007/s11633-017-1053-3

    Article  Google Scholar 

  64. Zhao H, Shi J, Qi X, et al (2017) Pyramid Scene Parsing Network. In: 2017 IEEE conference on computer vision and pattern recognition (CVPR). IEEE, pp 6230–6239

  65. Zhao J, Liu JJ, Fan DP et al (2019) EGNet: edge guidance network for salient object detection. Proceedings of the IEEE International Conference on Computer Vision, In

    Google Scholar 

  66. Zhou Z-H (2018) A brief introduction to weakly supervised learning. Natl Sci Rev 5:44–53. https://doi.org/10.1093/nsr/nwx106

    Article  Google Scholar 

  67. Zhou ZH (2018) A brief introduction to weakly supervised learning. In: A brief introduction to weakly supervised learning. Natl. Sci, Rev

    Chapter  Google Scholar 

  68. Zhou S, Wu J-N, Wu Y, Zhou X (2015) Exploiting local structures with the Kronecker layer in convolutional networks. arXiv.org

  69. Zhou X, Ito T, Takayama R, et al (2016) Three-dimensional CT image segmentation by combining 2D fully convolutional network with 3D majority voting. In: lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics). Pp 111–120

  70. Zhu X (2006) Semi-supervised learning literature survey. Technical Report 1530, Univ. of Wisconsin-Madison

Download references

Acknowledgements

This work was supported by the Sichuan Science and Technology Program (2020YFS0088); the 1·3·5 project for disciplines of excellence Clinical Research Incubation Project, West China Hospital, Sichuan University (2019HXFH036); the National Key Research and Development Program (2017YFC0113908), China; the Technological Innovation Project of Chengdu New Industrial Technology Research Institute (2017-CY02-00026-GX); and the West China Hospital, Sichuan University (139170022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Zhongxi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Yang, Y., Yuan, Y. et al. Detecting helicobacter pylori in whole slide images via weakly supervised multi-task learning. Multimed Tools Appl 79, 26787–26815 (2020). https://doi.org/10.1007/s11042-020-09185-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-020-09185-x

Keywords

Navigation