
1

Lightweight Residual Densely Connected
Convolutional Neural Network

Fahimeh Fooladgar, and Shohreh Kasaei, Senior Member, IEEE
Department of Computer Engineering, Sharif University of Technology,Tehran, Iran

Extremely efficient convolutional neural network architectures are one of the most important requirements for limited-resource
devices (such as embedded and mobile devices). The computing power and memory size are two important constraints of these devices.
Recently, some architectures have been proposed to overcome these limitations by considering specific hardware-software equipment.
In this paper, the lightweight residual densely connected blocks are proposed to guaranty the deep supervision, efficient gradient
flow, and feature reuse abilities of convolutional neural network. The proposed method decreases the cost of training and inference
processes without using any special hardware-software equipment by just reducing the number of parameters and computational
operations while achieving a feasible accuracy. Extensive experimental results demonstrate that the proposed architecture is more
efficient than the AlexNet and VGGNet in terms of model size, required parameters, and even accuracy. The proposed model has
been evaluated on the ImageNet, MNIST, Fashion MNIST, SVHN, CIFAR-10, and CIFAR-100. It achieves state-of-the-art results
on Fashion MNIST dataset and reasonable results on the others. The obtained results show the superiority of the proposed method
to efficient models such as the SqueezNet. It is also comparable with state-of-the-art efficient models such as CondenseNet and
ShuffleNet.

Index Terms—Image Classification, Convolutional Neural Networks, Deep Learning, Efficient Architecture.

I. INTRODUCTION

IN the last decades, Convolutional Neural Networks (CNNs)
have changed the landscape of visual recognition tasks such

as image classification [1]–[3] and semantic segmentation [4]–
[6]. These models need large training datasets with high-end
GPU devices to learn a large number of parameters via a
high number of computational operations. However, the most
important issues in CNN models are the hardware and the
burden of computational cost. Yet, complex CNNs [3] with
high resource demands have been proposed to increase the
accuracy. Besides, the ultra-deep CNN models have further
increased the depth of networks from 8 layers (AlexNet) [7] to
more than one thousand layers (ResNet) [1]. The general idea
of CNNs has proceeded through deeper and more complex
networks to boost the performance in terms of the model’s
accuracy. But, the efficiency of networks in terms of model’s
size, inference speedup, and computational costs have been
rarely inspected. Deploying CNN models on applications with
embedded platforms (such as autonomous driving [8], [9]
and connected vehicle control [10]) contains a broad area of
research that are encountered with major issues. Some of these
issues are the computational cost and memory limitations of
their hardware in the inference time. For mobile and embedded
devices (such as robotics, drones, and smartphones) the model
size, memory requirement, inference time, and computational
cost are very important. As such, a serious question that
arises is whether it is really necessary to have these complex
models with a huge number of parameters and computational
operations.

The amount of redundancy among the parameterization of
CNNs facilitates some novel pruning [11], [12], quantization
[13], [14], and factorization methods [15] to reduce the model
size. Denil et al. [16] demonstrated this significant redundancy
in the weights of neural networks. Efficiency of networks in

the viewpoint of special purpose applications (like robotics,
augmented realities, and self-driving cars) established some
novel model structures with impressive architecture designs.
ResNet [1], [2] and DenseNet [17] proposed two novel archi-
tectures which reduced the computational cost by a factor of
5× and 10× alongside boosting the accuracy when compared
to the VGG [18] on Imagenet dataset [7]. Meanwhile, the Mo-
bileNet [19], ShuffleNet [20], and CondenseNet [21] reduced
the computational cost approximately by a factor of 25×, 25×,
and 20×, respectively, while obtaining a comparable accuracy
to the VGG on ImageNet.

The general notion of shortcut connection and residual
connection have been proposed by the highway networks
[22], [23] and ResNet model [1], [2], respectively. Thereafter,
DenseNet [17] presented the idea of densely connected layers
where each layer obtains concatenated feature maps of pre-
ceding layers. Subsequently, these two main ideas have been
applied to different applications and network architectures. For
instance, the skip connections have been exploited on encode-
decoder models for dense prediction tasks (such as semantic
segmentation and depth estimation) [24], [25]. The local and
global residual connections have been utilized for image super-
resolution and restoration via exploiting the hierarchical fea-
tures from all preceding convolutional layers [26], [27]. These
different models and applications have a shared characteristic
which creates short paths from early layers to later ones via
these two main concepts while they differ in network topology,
training procedure, and challenges.

In this paper, the idea of feature reuse ability of the
DenseNet [17] with the residual connection idea of the ResNet
[1] are exploited to achieve an ultra slimmed deep network.
The proposed architecture, called Efficient Residual Densely
Connected CNN (RDenseCNN), is illustrated in Figure 1. In
the proposed method, an extremely small-size CNN model is
presented to reduce the computational cost, memory require-

ar
X

iv
:2

00
1.

00
52

6v
2 

 [
cs

.C
V

] 
 8

 J
un

 2
02

0



2

ment, and inference time without utilizing any new operation
or hardware-software equipment. The performance of the
proposed model is extensively evaluated on the ImageNet [7],
MNIST [28], Fashion MNIST [29], SVHN [30], CIFAR-10,
and CIFAR-100 [31] datasets. The obtained results show that
its performance is comparable with most available networks
in terms of the accuracy, the number of parameters, and the
Floating-Point Operations (FLOPs). Our proposed method has
obtained superior performance on MNIST, Fashion MNIST,
and CIFAR datasets. Moreover, the model has achieved 4.8%
higher accuracy with 46× smaller model size when compared
to the AlexNet on ImageNet dataset. It has also attained
2× lower number of parameters at only 3% drops in top-1
accuracy compared to the MobileNet [19].

Main contributions of this paper are as follows:
• Presenting an extremely small CNN model with feature

reuse abilities, deep supervision, and efficient gradient
flows by residual densely connected blocks.

• Reducing the computational cost and memory require-
ments with a feasible accuracy.

• Presenting a CNN model with basic common operations
without requiring additional software or hardware equip-
ment.

• Analyzing CNN models in terms of accuracy versus the
number of parameters.

• Representing the effect of residual connections alongside
the densely connected blocks (this can be an important
result for those who want to combine these two ideas).

This paper is organized as follows. In Section II, the
related work is explained in four categories. The proposed
efficient residual densely connected CNN model is introduced
in Section III. Experimental results on six most import image
classification datasets are reported in Section IV. In Section
V and VI, concluding remarks are discussed.

II. RELATED WORK

The aim of designing efficient CNN architectures is to
develop these models for limited-resource devices. There are
three main limitations for running CNN models on embedded
devices; namely, the model size, the run-time memory
requirement, and the required number of operations. Some
methods have been proposed to overcome these constraints
by compressing the model size in different ways. These can
be classified into four main categories of (i) quantizing and
factorizing, (ii) pruning redundant connections, (iii) designing
efficient architectures, and (iv) learning efficient architectures.
These are explained next.

Quantizing and factorizing: To compress large CNN
models, Denton et al. in [15] proposed to approximate
the fully connected weights of CNNs by singular value
decomposition methods. They obtained approximately 3×
compression in the model size. Weight quantization is another
method to compress the model size. HashNet [13], Binarized
Neural Networks [14], and Xnor-net [32] (binary or ternary
weight quantizations) can also compress the model size, save
run-time memory, and speed up the inference time, but to

the cost of reduced accuracy. Jacob et al. [33] proposed the
quantization of both weights and activations as 8-bit and
32-bit integers that the integer-only arithmetics have been
carried out in the inference time.

Pruning and sparsifying: These methods can be performed
at different granularity levels (weight, kernel, channel, and
layer levels). In [11], unimportant connections with small
weights are pruned to compress the model size and to save
the memory. The authors of [12] and [34] proposed pruning
at kernel and neuron levels, respectively. Wen et al. [35]
proposed to apply the sparsity at different levels of CNNs’
structure (kernels, channels, and layers). All of these methods
decreased the run-time memory and time elapse at a moderate
accuracy loss. But, in some cases, they need special libraries
to apply the pruning and sparsifying modules [11], [36].
From the fine-to-coarse grains of pruning level, flexibility,
generality, and compression ratio decrease. Meanwhile,
special hardware/software requirements are needed for almost
fine grain levels.

Designing efficient architectures: Recent CNN structures
(such as the ResNet [1], DenseNet [17], and Xception [37])
have more efficient models than early CNNs (like AlexNet [7]
and VGG [18]). Besides, specific purpose CNN models [19]–
[21], [38] have been designed to decrease the computational
cost and memory requirement with the speedup in inference
time. To reduce the model size (number of parameters)
and computational cost (number of Add-Multiplication
operations), these CNN models utilized the idea of group
convolution and depth-wise separable convolution. The
extreme version of inception modules (called Xception) has
been proposed by Chollet [37] to boost the performance
of the Inception V3 by substituting Inception modules
with depth-wise separable convolutions. The MobileNet
[19] proposed an efficient small architecture that applied
the depth-wise convolution followed by the point-wise
convolution as the depth-wise separable convolution to reduce
the computational cost and model size. Howard et al. [19]
proposed two hyperparameters as the width and resolution
multipliers that controlled the input width of a layer and the
input image resolution, respectively. The novel channel shuffle
operation [20] has been proposed to generalize the cascaded
group convolutions. In other words, the ShuffleNet [20]
reformed the group and depth-wise separable convolutions
by shuffling the outputs of the point-wise group convolution
fed to the depth-wise separable convolutions. The authors
of CondenseNet [21] proposed to learn these groups at
the training phase by a novel module called learned group
convolution. At the half of training iterations, their network
eliminated filters with small magnitude weights; hence the
structure of convolution layers sparsified. Consequently, the
kernel pruning performed as the condensation procedure by
the condensation factor. In the second half of the training
phase, fixed filters have been trained. Then, at each layer,
the index layer has been proposed to select and rearrange the
orders of input feature maps.



3

Fig. 1: Proposed RDenseCNN model with 4 dense blocks and 3 transition blocks. The details of each block illustrated in
Figure 2

Learning efficient architectures: Some new methods pro-
posed to learn the structure of networks, automatically. Some
recent methods [39]–[41] applied an architecture search to
design an efficient CNN model. These models effectively
scale the network depth, width, and resolutions to achieve
a higher efficiency alongside accuracy. In order to design a
family of models, the authors of EfficientNet [41] proposed
a neural architecture search that applied a scaling method to
uniformly scale the depth, width, and resolution. Baker et al.
[42] proposed to learn the structure of CNNs by reinforcement
learning. The efficient block-wise neural network architecture
generation(BlockQNN) has been proposed in [43] to auto-
matically generate the network by utilizing the Q-Learning
paradigm with the epsilon-greedy exploration strategy. In
[44], a sequential model-based optimization strategy has been
utilized to progressively search through the neural architecture
spaces from simple to complex structures. Network slimming
[45] is another approach that tried to learn a scale factor for
each layer to eliminate channels with small scaling factors.
The authors of [45] considered the loss function with the
L1-norm penalty on the scaling factors to apply sparsity.
These approaches succeeded in dealing with all the mentioned
limitations, but they need iterative training procedures to train
the slimmed network.

III. PROPOSED EFFICIENT RESIDUAL DENSELY
CONNECTED CNN

The novel CNN models are constructed as the sequentially
cascaded layers or basic blocks. Each layer l or basic block
k can be denoted as a function Fl(.) or Hk(.), respectively.
The output of the lth layer or the kth block is determined as
xl or yk, accordingly. The Fl(.) function can be made from
the compositions of some linear or non-linear functions; such
as Convolution(Conv), Batch Normalization (BN), Rectified
Linear Units (Relu), or Pooling (max or average pooling). The
Hk(.) function can be formed by the combinations of functions
that each of them belongs to each layer of the kth block.

The proposed Residual Dense CNN is built upon the
idea of residual and densely connected blocks. The common
intention of residual and densely connected blocks is to
reuse feature maps of preceding layers in the upper layers.

Layer

Layer

Layer

Layer

C

C

C

C

Input	(xl)

Output	(xo)
C Concatenation

Batch	Normalization

ReLU

1x1	Convolution

Batch	Normalization

ReLU

3x3	Convolution

(a)

(b)

Batch	Normalization

ReLU

1x1	Convolution

Avg.	Pooling

(c)

Fig. 2: Three building blocks: (a) dense block, (b) operations
in each layer of dense block, (c) operations in transition block.

Therefore, these two ideas are first elucidated. Then, the
building block is clarified in detail.

Residual Blocks: Common CNN models have a plane
structure in which the input of each intermediate layer comes
directly from the output of the previous layer as xl = F (xl−1).
But, in the residual block, the input goes through two different
functions and the final output is the summation of their
outputs, given by

xl = F (xl−1) +G(xl−1). (1)

The function G can be considered as identity mapping
proposed by ResNet model [1], xl = F (xl−1) + xl−1.
Therefore, it bypasses the non-linear transformations of F
applied on the input xl−1 to resolve the vanishing gradient
problem.

Densely Connected Blocks: In feed-forward networks, the
output feature maps of each layer can be fed to all subsequent
layers (as their input). In the densely connected block [17],
all outputs of l preceding layers construct an input of the lth

layer as
xl = H([x0, x1, ..., xl−1]) (2)



4

where [.] denotes the concatenation of all previous feature
maps. The equal size of feature maps is an essential factor
for the concatenation operation. Therefore, the size of feature
maps is preserved within each dense block. Hence, the idea
of densely connected CNNs can be applied locally within the
range of layers in each block.

A. Details of Proposed Residual Densely Connected Model
The proposed method consists of the dense and transition

blocks with one skip connection denoted as residual dense
block (see Figure 1). Therefore, these combination of non-
linear transformations, performed in two consequent blocks,
are bypassed by a skip connection. Suppose xl is the input to
the residual dense block, then the output of this residual dense
block can be defined as

xo = H(xl) + F (xl) (3)

where F (xl) is utilized as a skip connection to ensure an
unimpeded information flow through the network. The H(xl)
function is defined as

H(xl) : HT (HD([xl, xl+1, ..., xl+m])) (4)

where xo−1 = HD([xl, xl+1, ..., xl+m] denotes the non-linear
transformations performed on outputs of m sequential densely
connected layers of the dense block and xo−1 is an output of
this dense block. The HT indicates the non-linear functions
performed in the transition block.

Composite function HD(.): This function is a sequential
combination of the BN, Relu, 1 × 1 Conv , BN, Relu, and
3 × 3 Conv defined as one layer of the dense block, as
depicted in Figure 2. The overall structure of a dense block
with 4 layers is illustrated in Figure 2.(a), where operations
of each layer are given in Figure 2.(b).

Composite function HT (.): This function is a sequential
combination of the BN, Relu, 1× 1 Conv , and 2× 2 average
pooling performed in the transition block depicted in Figure
2.(c). Hence, the spatial size of the output diminishes by a
factor of 2 in each transition. Therefore, the element-wise
summation of Equation (3) imposes a further down-sampling
operation in the skip connection. To resolve the inconsistency
of the size of the feature maps, the F in Equation (3) is
considered to be an average pooling function instead of
an identity map. However, F is a non-linear function and
does not lead to loss of information about the original
state of the image. Therefore, the input to the next block
contains the down-sampled version of the original data; where
it has been altered by the non-linearity function denoted by F .

Growth rate: Each dense block has m layers. The growth
rate determines the amounts of new feature maps that are
exploited by each 3 × 3 convolution layer of HD function.
Therefore, the output of the dense block has m×k+k0 feature
maps, where k0 is the number of input feature maps. Since the
number of layers in each dense block is large, it is possible to
limit the growth rate to control and manage the width of the
proposed method.

B. Architecture Design

The proposed architecture consists of three residual dense
blocks. It has three architecture parameters (i) number of dense
blocks, (ii) number of layers within each dense block, and
(iii) growth rate. In Table I, the more details of three different
configurations of RDenseCNN are presented. The proposed
network consists of only three or four dense blocks where each
of them has 16, 20, or 24 layers. The growth rate (k) can be
12 or 16. The initial convolution layer has 4× k convolution
kernels of size 3× 3 with stride and padding of 1. Hence, the
number of convolutional kernels in the 1×1 convolution layer
of the transition block is set to 4k to apply the element-wise
summation of Equation (3).

Fortunately, all operations of the RDenseCNN model are
the basic CNN operations (such as Conv, BN, Relu, and
Pooling). They are performed without requiring any special
software or hardware to accelerate the computation. The
proposed architecture is trained by a single end-to-end training
procedure in contrast to architecture search methods [39],
[40], [42] via reinforcement learning or some other methods
that need to be trained in two separate sequential training
phases [21]. The architecture search methods need to train
hundreds of models to determine the best models; as their
searching space is extremely large. Hence, they imposed a
prohibitively expensive computational complexity to find the
best architecture.

IV. EXPERIMENTAL RESULTS

In this section, the effectiveness of the proposed
RDenseCNN is evaluated in terms of computational cost,
model size, accuracy and implementation requirements. It has
been evaluated on six main datasets MNIST, Fashion-MNIST,
SVHN, CIFAR-10, CIFAR-100, and ImageNet. The proposed
model has been trained with different depths and growth rates.
To compare the computational efficiency of the method, it
has been compared with specific and general-purpose CNN
models.

A. Datasets

The following six important datasets, which are commonly
used in the image classification have been employed to
evaluate the performance of the proposed method. They are
summarized in Table II.

MNIST: This database of handwritten digits [28] contains
60,000 and 10,000 examples as the training and test sets,
respectively. The digits have been size-normalized and
centered in 28× 28 images.

Fashion MNIST (fMNIST): It can be seen as similar in
flavor to MNIST (e.g., the image size and structure of training
and test splits) [29]. Each example is a 28 × 28 grayscale
image corresponded to one of the 10 class labels.

Street View House Numbers (SVHN): It consists of over
600,000 images obtained from house numbers in Google
Street View images [30]. The digit images are significantly



5

TABLE I: Architectures of proposed RDenseCNN model. Each Conv. layer is denoted by BN-Relu-Conv. RDenseCNN-k-d
[’k’: growth rate, ’d’: network depth].

Layers Output size RDenseCNN-k-132 RDenseCNN-k-164 RDenseCNN-k-196
Convolution 128 × 128 4k, 3× 3 Conv
Avg. Pooling 64 × 64 2× 2 avg.pooling

Dense Block-1 64 × 64
[
1× 1 Conv.
3× 3 Conv.

]
× 16

[
1× 1 Conv.
3× 3 Conv.

]
× 20

[
1× 1 Conv.
3× 3 Conv.

]
× 24

Trans Block-1 32 × 32 4k, 1× 1 Conv.
2× 2avg. pooling

Dense Block-2 32 × 32
[
1× 1 Conv.
3× 3 Conv.

]
× 16

[
1× 1 Conv.
3× 3 Conv.

]
× 20

[
1× 1 Conv.
3× 3 Conv.

]
× 24

Trans Block-2 16 × 16 4k, 1× 1 Conv.
2× 2 avg.pooling

Dense Block-3 16 × 16
[
1× 1 Conv.
3× 3 Conv.

]
× 16

[
1× 1 Conv.
3× 3 Conv.

]
× 20

[
1× 1 Conv.
3× 3 Conv.

]
× 24

Trans Block-3 8 × 8 4k, 1× 1 Conv.
2× 2 avg.pooling

Dense Block-4 8 × 8
[
1× 1 Conv.
3× 3 Conv.

]
× 16

[
1× 1 Conv.
3× 3 Conv.

]
× 20

[
1× 1 Conv.
3× 3 Conv.

]
× 24

Classification 1 × 1 8 ×8 Global avg. pool, 1000−D fc, softmax

more difficult to process compared to the MNIST examples
as they are captured from real-world natural scenes.

CIFAR: It contains 60,000 colored low resolution 32× 32
images with 10 and 100 classes, determined as CIFAR-10
and CIFAR-100 [31], accordingly. They contain 50,000 and
10,000 images for training and test, respectively.

ImageNet: This is the pioneer large scale dataset for image
classification [7]. It contains 1.2 million training and 50,000
validation images classified into 1000 classes.

B. Training Procedures

The proposed model has been trained from scratch using
the Stochastic Gradient Descent (SGD) optimization process.
Mini-batch sizes have been selected depending on the datasets.
The mini-batch size is set to 64 and 30 for the ImageNet
dataset. It is set to 128 and 256 for five other datasets. The
proposed model has been trained during 120 and 300 epochs
for the ImageNet and five other datasets, respectively. The
training process is initialized with a learning rate of 0.1 and
is decreased every 30 epochs by a factor of 10. The weight
decay is set to 10−4. The standard data augmentation methods
for training images have been applied as in [1], [17].

C. Classification Results on MNSIT and Fashion-MNIST

One of the well-known benchmark datasets for machine
learning algorithms is MNIST which almost all of the methods
validate their algorithms based on it. The state-of-the-art ac-
curacy in this dataset has been approached to 99.75%. Hence,
Xiao et al. [29] introduced Fashion-MNIST as a replacement
of the MNIST dataset in 2017. It includes 10 classes of ”T-
shirt, Trouser, Pullover, Dresser, Coat, Sandal, Shirt, Sneaker,
Bag, and Ankle boot”. Our network’s inputs for both MNIST
and Fashion-MNIST datasets are 28×28 grayscale images.
The structure of RDenseCNN model is depicted in Table
III. It contains three dense blocks alongside two transition
blocks. The experiments have been conducted on the smallest
proposed model with k = 12 and d = 100.

The performance of the proposed method has been com-
pared with the most recent CNN models which have validated
their algorithm on MNIST and Fashion-MNIST datasets. The
results are presented in Table IV. All available methods that
have published their results on these two datasets have not
reported the number of parameters and floating-point oper-
ations. Therefore, it is not possible to compare all of them
in terms of model size and computational complexity. But in
terms of accuracy, the proposed method has achieved state-of-
the-art results in Fashion-MNIST. Our proposed method has
attained 99.3% accuracy on Fashion-MNIST where it is 5.7%
and 4% better accuracy than two recent models of CapsNet
[46] and DENSER [47], respectively. In comparison with the
Wide ResNet method that is reported in [48], the proposed
method has attained better accuracy with approximately 36M
fewer number of parameters. Its error rate of 0.7% on fMNIST
dataset is significantly lower than the error rates achieved
by AlexNet, VGGNet, and ResNet architecture. This may
be explained by the fact that the larger models in terms of
parameters tend to overfit to the training set in this kind of
datasets.

D. Classification Results on CIFAR and SVHN

The network inputs for both CIFAR and SVHN datasets are
32×32 images, with the per-pixel mean subtracted. The overall
network architectures considered for these two datasets are as
those for the MNIST dataset which are depicted in Table III.

The experiments are performed on three different network
depths with the growth rate k=12. On CIFAR-10 dataset, the
error drops from 6.8% to 5.7% as the number of parameters
increases from 0.61M to 1.1M. The similar increasing trends
of FLOPS and number of parameters have been observed on
CIFAR-100 where the error rate decreases from 30.3% to
25.9%.

The proposed method has been compared with the most
important special-purpose CNN models (such as the pruned
version of CNNs and CondenseNet). As the results presented
in Table V shows, the proposed method has surpassed almost
all of the pruned CNN models. For instance, it obtained a



6

TABLE II: Image classification datasets. [’∗’ denoted extra training data.]

Name Image Size No. of Classes No. of Training Image No. of Test Image
MNIST [28] 28× 28 10 50,000 10,000
fMNIST [29] 28× 28 10 50,000 10,000
SVHN [30] 32× 32 10 73,257 + 531,131∗ 26,032

CIFAR-10 [31] 32× 32 10 50,000 10,000
CIFAR-100 [31] 32× 32 100 50,000 10,000

ImageNet [7] 256× 256 1000 1.2M 50,000

TABLE III: Architectures of proposed RDenseCNN for CIFAR, SVHN, MNIST and fMNIST datasets. Each Conv. layer is
denoted as BN-Relu-Conv. RDenseCNN-k-d [’k’: growth rate, ’d’: network depth].

Layers Output size RDenseCNN-k-100 RDenseCNN-k-123 RDenseCNN-k-147
Convolution 32 × 32 4k, 3× 3 Conv
Avg. Pooling 16 × 16 2× 2 avg.pooling

Dense Block-1 16 × 16
[
1× 1 Conv.
3× 3 Conv.

]
× 16

[
1× 1 Conv.
3× 3 Conv.

]
× 20

[
1× 1 Conv.
3× 3 Conv.

]
× 24

Trans Block-1 8 × 8 4k, 1× 1 Conv.
2× 2avg. pooling

Dense Block-2 8 × 8
[
1× 1 Conv.
3× 3 Conv.

]
× 16

[
1× 1 Conv.
3× 3 Conv.

]
× 20

[
1× 1 Conv.
3× 3 Conv.

]
× 24

Trans Block-2 4 × 4 4k, 1× 1 Conv.
2× 2 avg.pooling

Dense Block-3 4 × 4
[
1× 1 Conv.
3× 3 Conv.

]
× 16

[
1× 1 Conv.
3× 3 Conv.

]
× 20

[
1× 1 Conv.
3× 3 Conv.

]
× 24

Classification 1 × 1 4 ×4 Global avg. pool, 10−D or 100−D fc, softmax

TABLE IV: Comparison of classification error (%) with
state-of-the-art CNN models on MNIST and Fashion-
MNIST(fMNIST) datasets. ’+’ reported in [47].

Model FLOPS No. of Parameters MNIST fMNIST
AlexNet [7] - - - 10.1+

VGGNet [18] - - - 6.5+

ResNet [1] - - - 5.1+
WRN-28-10 [48] - 36.5M - 4.1

WRN-28-10 + RE [48] - 36.5M - 3.7
CapsNet [46] - - 0.25 6.4
DENSER [47] - - 0.3 4.7

RDenseCNN-12-100 52.4M 0.61M 0.5 0.7

lower classification error with 7× less number of parameters
and approximately 2.3× fewer FLOPs than the VGG-pruned
model [12], more especially in CIFAR-10. The RDenseCNN
did not outperform the CondenseNet and pruned DenseNet-
40 in terms of model size. But, note that it has a lower
computational cost with only 0.7% drops in the classification
error. It is notable that the most recent efficient CNN models
(like MobileNet [19] and ShuffleNet [20]) have not reported
their performance on these two datasets.

In Table VI, the classification error and the number of pa-
rameters are compared with the state-of-the-art CNN models.
The RDenseCNN-147 has outperformed the VGGNet [18] and
ResNet [1] models. ResNet and DenseNet models with a high
number of parameters (more than 10M) have obtained a lower
classification error in both CIFAR datasets. The proposed
model has a comparable performance with DenseNet and
ResNet models in terms of error and the number of parameters.
CliqueNet [49] has attained state-of-the-art classification error
on SVHN but with 9.45G FLOPS computational complexity
while our proposed method has 121.4M FLOPS, approxi-
mately 80× lower computational complexity than CliqueNet.

TABLE V: Comparison of classification error (%) with effi-
cient state-of-the-art CNNs on CIFAR-10(C-10) and CIFAR-
100(C-100) datasets.

Model FLOPs No. of Parameters C-10 C-100
VGG-16-pruned [12] 206M 5.40M 6.60 25.3
VGG-19-pruned [45] 250M 5.00M - 26.5

ResNet-56-pruned [12] 90M 0.73M 6.94 -
ResNet-110-pruned [12] 213M 1.68M 6.45 -

ResNet-164-B-pruned [45] 124M 1.20M - 23.9
DenseNet-40-pruned [45] 190M 0.66M 5.19 -

CondenseNet-94 [21] 122M 0.33M 5.00 24.1
RDenseCNN-12-100 69.1M 0.61M 6.8 30.3
RDenseCNN-12-123 88.2M 0.78M 6.3 29.2
RDenseCNN-12-147 121.4M 1.10M 5.7 25.9

E. Classification Results on ImageNet

The proposed method has been evaluated on the ImageNet
dataset. Figure 3 illustrates the behavior of RDenseCNN
with different depths. It shows top-1 and top-5 validation
errors for two different RDenseCNN architectures during 120
epochs. The proposed model achieves lower top-1 and top-
5 classification errors when the depth increases. The top-
1 error rate drops from 38.0% to 34.7% as the number of
parameters increases from 1.3M to 2.3M by increasing the
depth of network.

The comparison results with the state-of-the-art CNN mod-
els as well as efficient CNN architectures (designed for specific
embedded devices) are shown in Figures 4 and 5. These two
charts have been sorted based on top-1 accuracy. It provides
a good intuition about the ratio of accuracy versus the model
size. The results presented in Figure 4 reveal that:
(i) RDenseCNN outperforms the AlexNet in terms of both

the error rate and the number of parameters. It has a 26×
lower number of parameters with 8% higher accuracy.

(ii) RDenseCNN has attained a reasonable error rate by a
fewer number of parameters when compared with the



7

TABLE VI: Comparison of classification error (%) with state-of-the-art CNN models on CIFAR-10(C-10), CIFAR-100(C-100),
and SVHN datasets. ’+’ is reported in [45].

Model FLOPS No. of Parameters C-10 C-100 SVHN
CapsNet [46] - - 10.6 - 4.3

SkipNet-ResNet110 [50] - - 6.4 28.8 1.9
EfficientNet-B7 [41] - 64M 1.1 8.3 -

CMPE-SE-WRN-28-10 [51] - 36.9M 3.6 18.5 1.59
Wide ResNet-28-10 [52] - 36.5M 4.0 19.3 -
DenseNet-24-100 [17] - 27.2M 3.7 19.3 1.59

VGGNet [18] - 20.0M+ 6.3+ 26.7+ -
ResNet-1001 [2] - 10.2M 4.6 22.7 -
CliqueNet [49] 9.45G 10.14M 5.06 23.14 1.51

ResNet reported by [53] - 1.70M 6.4 27.2 2.0
ResNet-164 [2] - 1.70M 5.5 24.3 -

ResNet with Stochastic Depth [53] - 1.70M 5.2 24.6 1.8
RDenseCNN-12-147 121.4M 1.10M 5.7 25.9 2.5

Fig. 3: Validation error for two RDenseCNN models. The
initial learning rate is set to 0.1 and decreased every 30 epoch.

Inception V1, GoogleNet, and ResNet-18. It has approxi-
mately a 3× smaller number of parameters at 3.4% drops
of accuracy.

(iii) The best model is the Wide-ResNet-50 [52] which yields
a 13% higher accuracy with a 66.6M additional number
of parameters.

(iv) The VGGNet is the largest model in terms of the number
of parameters. It has lots of redundancy among the
parameterization of its model [12]. Hence, there are some
methods whose accuracy is still close to VGGNet with a
drastic difference in their number of parameters.

To show more details about these results, Figure 5 considers
only more efficient models. The proposed RDenseCNN is
more accurate than the SqueezNet [38] even with fewer
parameters. The method is also more efficient than some
configurations of MobileNet [19] (e.g., 0.25 MobileNet and
0.5 MobileNet). The MobileNet has width and resolution
multipliers to design a smaller and faster model. The pro-
posed model has been compared with different configurations
of the MobileNet. The results are presented in Table VII.
These different configurations provide a trade-off between the
classification error and the model size. At the same level
of model size, RDenseCNN has achieved a very competitive
classification error.

TABLE VII: Comparison with different configurations of
MobileNet [19] on ImageNet dataset.

Model No. of Parameters Top-1 Error
1.0 MobileNet-224 4.2M 29.4
1.0 MobileNet-128 4.2M 35.6
0.75 MobileNet-224 2.6M 31.6
0.5 MobileNet-224 1.3M 36.3
0.5 MobileNet-160 1.3M 39.8
0.25 MobileNet-224 0.5M 49.4
RDenseCNN-12-132 0.8M 41.5
RDenseCNN-16-132 1.3M 38.0
RDenseCNN-16-196 2.3M 34.7

V. DISCUSSION

The proposed method evolved based on two well-known
CNN models. The main goal of our architecture is to combine
two ideas of these two models to achieve a more lightweight
and efficient model. In other words, the proposed model is not
an extension of the DenseNet or ResNet model, it is a novel
architecture that utilizes the residual and dense connection
ideas with the light CNN structure. Our proposed model has
less number of parameters and computational complexity at
the level of feasible and comparable accuracy via the residual
and dense connection ideas. In the following two subsections,
the proposed model has been investigated with more details.

A. The Effect of Residual Connections

The general trend of CNN models (such as the AlexNet and
VGGNet) is to proceed through deeper and more complex
networks to boost the model’s accuracy. The AlexNet and
VGGNet architectures are the types of plane models where
their structures are constructed as sequentially cascaded layers
or basic blocks. In these plane structures, the input of each
intermediate layer comes directly from the output of the
previous layer. The proposed model is built upon the idea of
residual and densely connected blocks. These residual densely
connected blocks enable a feature reuse ability with efficient
gradient flows where these properties did not exist in the
AlexNet and VGGNet. In this section, the importance of skip
connection in the proposed residual dense block is investi-
gated. The proposed architecture without the skip connection is
considered as ”Plane-DenseCNN” (PDenseCNN). In this plane
architecture, every dense block is connected in a sequentially
cascaded manner. It is notable that this PDenseCNN is our



8

Fig. 4: Ratio of top-1 accuracy vs. number of parameters (models are evaluated on ImageNet dataset).

Fig. 5: Ratio of top-1 accuracy vs. number of parameters (efficient models are evaluated on ImageNet dataset).

lightweight model without residual connections and it is not a
version of the well-known DenseNet model. To demonstrate
the effectiveness of skip connections in the proposed residual
dense block, these two models have been evaluated on three
datasets. Figure 6 compares the PDenseCNN and RDenseCNN
models in terms of top-1 accuracy during training in both train
and validation splits of datasets. The results presented in this
figure reveal that the RDenseCNN performs more accurately
than the PDenseCNN. It attains approximately a 20% higher
top1-accuracy whilst requiring the same number of parameters.
This is because the residual connections do not enforce any
additional number of parameters in our model. These exper-
iments are performed based on the PDenseCNN-12-100 and
RDenseCNN-12-100 models with 0.6M parameters.

B. Model Analysis

The efficient flow of gradients, feature reuse ability, and
deep supervision in short and long ranges are three main
properties of the proposed model. In each layer of the dense
block, a small set of feature maps (based on the growth
rate) is selected as the nonlinear composition of input feature

maps. Then, these feature maps are concatenated with the
previous ones and passed to the proceeding layer to produce
the new nonlinear composition. In other words, the feature
maps of early layers of each dense block can be reused by the
last ones in the same dense block. This feature reuse ability
preserves the information flows through two consecutive dense
and corresponding transition blocks. In other direction, the
skip connection utilized in each residual dense block amend
the main information flows of the network. Meanwhile, the
deep supervision has been applied in the network by both
dense connections in the residual block (short ranges) and also
the skip connection (long ranges). In the densely connected
model, each layer receives additional supervision from the
loss function via a shorter connection. Hence, feature maps
of intermediate layers learn more discriminative features.

Forevermore, there are some trade-offs among the compu-
tational cost, memory requirements, and accuracy in all of
CNN models. The proposed model more significantly focused
on the model size and computational cost than the accuracy.
Therefore, it does not attain a state-of-the-art classification
error. The accuracy versus the number of parameters can be
more informative for selecting an appropriate model based



9

(a) (b) (c)

Fig. 6: Comparison of Plane-DesneCNN and Residual-DenseCNN on three datasets: (a) SVHN, (b) CIFAR-10, (c) CIFAR-100.

on the requirements of specific applications to analyze the
efficiency of CNN models. Therefore, the ratio of top-1
accuracy versus the number of parameters has been computed
for state-of-the-art CNN models. These are depicted in Figure
4. As shown in this figure, the RDenseCNN achieves the
admissible rank among different state-of-the-art models based
on these two evaluation metrics. The VGG-16, Wide ResNet
and AlexNet have a significantly large number of parameters.
In general, it is better to investigate a solution that can consider
the counterbalance of this trade-off among these three factors
as large as enough. In our opinion, the neural architecture
search methods can achieve an attainable balancing among
these three factors, but at the cost of the computational power
in the training phase.

VI. CONCLUSION

One of the main goals of this work was to design an
ultra-small model to analyze the amount of complexity of
novel CNN architectures that have attained state-of-the-art
performance in terms of classification error. Towards this goal,
a small CNN model was proposed based on two main ideas
of residual connections and densely connected convolutional
layers. This proposed RDenseCNN architecture had a few
numbers of parameters and the low computational cost with
a feasible classification error. It contained densely connected
layers in terms of some dense blocks with skip connections
to preserve the flow of information in a deep CNN model.
The proposed model had 26× fewer number of parameters
with a 8% better classification error than the first widespread
CNN model (AlexNet). It is worth mentioning that the smallest
proposed model had the same level of accuracy (1% better
accuracy) with the AlexNet at 60× smaller model size. The
results revealed that some levels of complexity in CNN mod-
els have unacceptable justifications, seriously in early CNN
models. Consequently, these unfeasible complex models can
be substituted by a significantly smaller and more efficient
model, particularly in limited resource applications. As such,
the proposed method is more suitable for limited memory and
power applications where reasonable accuracy is acceptable at
the very low number of parameters and computational cost.

REFERENCES

[1] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[2] ——, “Identity mappings in deep residual networks,” in European
conference on computer vision. Springer, 2016, pp. 630–645.

[3] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in
Proceedings of the IEEE conference on computer vision and pattern
recognition, 2018, pp. 7132–7141.

[4] M. Naseer, S. H. Khan, and F. Porikli, “Indoor scene understanding in
2.5/3d: A survey,” arXiv preprint arXiv:1803.03352, 2018.

[5] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2015, pp. 3431–3440.

[6] F. Fooladgar and S. Kasaei, “A survey on indoor rgb-d semantic
segmentation: from hand-crafted features to deep convolutional neural
networks,” Multimedia Tools and Applications, pp. 1–26, 2019.

[7] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012, pp. 1097–1105.

[8] S. Grigorescu, B. Trasnea, T. Cocias, and G. Macesanu, “A survey
of deep learning techniques for autonomous driving,” Journal of Field
Robotics, 2019.

[9] S. Kuutti, R. Bowden, Y. Jin, P. Barber, and S. Fallah, “A survey of deep
learning applications to autonomous vehicle control,” IEEE Transactions
on Intelligent Transportation Systems, 2020.

[10] F. Alam, R. Mehmood, I. Katib, S. M. Altowaijri, and A. Albeshri,
“Taawun: a decision fusion and feature specific road detection approach
for connected autonomous vehicles,” Mobile Networks and Applications,
pp. 1–17, 2019.

[11] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and con-
nections for efficient neural network,” in Advances in neural information
processing systems, 2015, pp. 1135–1143.

[12] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, “Pruning
filters for efficient convnets,” arXiv preprint arXiv:1608.08710, 2016.

[13] W. Chen, J. Wilson, S. Tyree, K. Weinberger, and Y. Chen, “Compress-
ing neural networks with the hashing trick,” in International Conference
on Machine Learning, 2015, pp. 2285–2294.

[14] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Ben-
gio, “Binarized neural networks: Training deep neural networks with
weights and activations constrained to+ 1 or-1,” arXiv preprint
arXiv:1602.02830, 2016.

[15] E. L. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fergus,
“Exploiting linear structure within convolutional networks for efficient
evaluation,” in Advances in neural information processing systems, 2014,
pp. 1269–1277.

[16] M. Denil, B. Shakibi, L. Dinh, N. De Freitas et al., “Predicting param-
eters in deep learning,” in Advances in neural information processing
systems, 2013, pp. 2148–2156.

[17] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks.” in Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, vol. 1, no. 2, 2017,
p. 3.

[18] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.



10

[19] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient convo-
lutional neural networks for mobile vision applications,” arXiv preprint
arXiv:1704.04861, 2017.

[20] X. Zhang, X. Zhou, M. Lin, and J. Sun, “Shufflenet: An extremely effi-
cient convolutional neural network for mobile devices,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2018, pp. 6848–6856.

[21] G. Huang, S. Liu, L. Van der Maaten, and K. Q. Weinberger, “Con-
densenet: An efficient densenet using learned group convolutions,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2018, pp. 2752–2761.

[22] R. K. Srivastava, K. Greff, and J. Schmidhuber, “Highway networks,”
arXiv preprint arXiv:1505.00387, 2015.

[23] ——, “Training very deep networks,” in Advances in neural information
processing systems, 2015, pp. 2377–2385.

[24] F. Fooladgar and S. Kasaei, “3m2rnet: Multi-modal multi-resolution
refinement network for semantic segmentation,” in Science and Infor-
mation Conference. Springer, 2019, pp. 544–557.

[25] D. Eigen and R. Fergus, “Predicting depth, surface normals and se-
mantic labels with a common multi-scale convolutional architecture,” in
Proceedings of the IEEE international conference on computer vision,
2015, pp. 2650–2658.

[26] Y. Zhang, Y. Tian, Y. Kong, B. Zhong, and Y. Fu, “Residual dense
network for image super-resolution,” in Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, 2018, pp. 2472–
2481.

[27] ——, “Residual dense network for image restoration,” arXiv preprint
arXiv:1812.10477, 2018.

[28] L. Deng, “The mnist database of handwritten digit images for machine
learning research [best of the web],” IEEE Signal Processing Magazine,
vol. 29, no. 6, pp. 141–142, 2012.

[29] H. Xiao, K. Rasul, and R. Vollgraf. (2017) Fashion-mnist: a novel image
dataset for benchmarking machine learning algorithms.

[30] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng,
“Reading digits in natural images with unsupervised feature learning,”
2011.

[31] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” Citeseer, Tech. Rep., 2009.

[32] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-net:
Imagenet classification using binary convolutional neural networks,” in
European Conference on Computer Vision. Springer, 2016, pp. 525–
542.

[33] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam,
and D. Kalenichenko, “Quantization and training of neural networks
for efficient integer-arithmetic-only inference,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2018,
pp. 2704–2713.

[34] H. Zhou, J. M. Alvarez, and F. Porikli, “Less is more: Towards compact
cnns,” in European Conference on Computer Vision. Springer, 2016,
pp. 662–677.

[35] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning structured
sparsity in deep neural networks,” in Advances in neural information
processing systems, 2016, pp. 2074–2082.

[36] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and
W. J. Dally, “Eie: efficient inference engine on compressed deep neural
network,” ACM SIGARCH Computer Architecture News, vol. 44, no. 3,
pp. 243–254, 2016.

[37] F. Chollet, “Xception: Deep learning with depthwise separable convolu-
tions,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2017, pp. 1251–1258.

[38] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally,
and K. Keutzer, “Squeezenet: Alexnet-level accuracy with 50x fewer
parameters and¡ 0.5 mb model size,” arXiv preprint arXiv:1602.07360,
2016.

[39] H. Cai, L. Zhu, and S. Han, “Proxylessnas: Direct neural architecture
search on target task and hardware,” International Conference on Learn-
ing Representations (ICLR), 2019.

[40] M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard,
and Q. V. Le, “Mnasnet: Platform-aware neural architecture search for
mobile,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2019, pp. 2820–2828.

[41] M. Tan and Q. V. Le, “Efficientnet: Rethinking model scaling
for convolutional neural networks,” in Proceedings of the 36th
International Conference on Machine Learning, ICML 2019, 9-15
June 2019, Long Beach, California, USA, ser. Proceedings of
Machine Learning Research, K. Chaudhuri and R. Salakhutdinov,

Eds., vol. 97. PMLR, 2019, pp. 6105–6114. [Online]. Available:
http://proceedings.mlr.press/v97/tan19a.html

[42] B. Baker, O. Gupta, N. Naik, and R. Raskar, “Designing neural network
architectures using reinforcement learning,” International Conference on
Learning Representations (ICLR), 2017.

[43] Z. Zhong, Z. Yang, B. Deng, J. Yan, W. Wu, J. Shao, and C.-L. Liu,
“Blockqnn: Efficient block-wise neural network architecture generation,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020.

[44] C. Liu, B. Zoph, M. Neumann, J. Shlens, W. Hua, L.-J. Li, L. Fei-Fei,
A. Yuille, J. Huang, and K. Murphy, “Progressive neural architecture
search,” in Proceedings of the European Conference on Computer Vision
(ECCV), 2018, pp. 19–34.

[45] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang, “Learning effi-
cient convolutional networks through network slimming,” in Proceedings
of the IEEE International Conference on Computer Vision, 2017, pp.
2736–2744.

[46] S. Sabour, N. Frosst, and G. E. Hinton, “Dynamic routing between
capsules,” in Advances in neural information processing systems, 2017,
pp. 3856–3866.

[47] F. Assunçao, N. Lourenço, P. Machado, and B. Ribeiro, “Denser: deep
evolutionary network structured representation,” Genetic Programming
and Evolvable Machines, vol. 20, no. 1, pp. 5–35, 2019.

[48] Z. Zhong, L. Zheng, G. Kang, S. Li, and Y. Yang, “Random erasing
data augmentation,” arXiv preprint arXiv:1708.04896, 2017.

[49] Y. Yang, Z. Zhong, T. Shen, and Z. Lin, “Convolutional neural networks
with alternately updated clique,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2018, pp. 2413–2422.

[50] X. Wang, F. Yu, Z.-Y. Dou, T. Darrell, and J. E. Gonzalez, “Skipnet:
Learning dynamic routing in convolutional networks,” in Proceedings
of the European Conference on Computer Vision (ECCV), 2018, pp.
409–424.

[51] Y. Hu, G. Wen, M. Luo, and D. Dai, “Competitive inner-imaging squeeze
and excitation for residual network,” arXiv preprint arXiv:1807.08920,
2018.

[52] S. Zagoruyko and N. Komodakis, “Wide residual networks,” arXiv
preprint arXiv:1605.07146, 2016.

[53] G. Huang, Y. Sun, Z. Liu, D. Sedra, and K. Q. Weinberger, “Deep
networks with stochastic depth,” in European conference on computer
vision. Springer, 2016, pp. 646–661.

http://proceedings.mlr.press/v97/tan19a.html

	I Introduction
	II Related Work
	III Proposed Efficient Residual Densely Connected CNN
	III-A Details of Proposed Residual Densely Connected Model
	III-B Architecture Design

	IV Experimental Results
	IV-A Datasets
	IV-B Training Procedures
	IV-C Classification Results on MNSIT and Fashion-MNIST
	IV-D Classification Results on CIFAR and SVHN
	IV-E Classification Results on ImageNet

	V Discussion
	V-A The Effect of Residual Connections
	V-B Model Analysis

	VI Conclusion
	References

