Skip to main content
Log in

Feature selection based on buzzard optimization algorithm for potato surface defects detection

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Different methods of feature selection find the best subdivision from the candidate subset. In all methods, based on the application and the type of the definition, a subset is selected as the answer; which can optimize the value of an evaluation function. The large number of features, high spatial and temporal complexity, and even reduced accuracy are common problems in such systems. Therefore, research needs to be performed to optimize these systems. In this paper, for increasing the classification accuracy and reducing their complexity; feature selection techniques are used. In addition, a new feature selection method by using the buzzard optimization algorithm (BUOZA) is proposed. These features would be used in segmentation, feature extraction, and classification steps in related applications; to improve the system performance. The results of the performed experiment on the developed method have shown a high performance while optimizing the system’s working parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Binary first mode

  2. Binary second mode

  3. Binary third mode

References

  1. Adeli A, Ghorbani-Rad A, Zomorodian MJ, Neshat M, Mozaffari S (2012) Improving nearest neighbor classification using particle swarm optimization with novel fitness function. In: International conference on computational collective intelligence, vol 7654. Springer, Berlin, pp 365–372

    Google Scholar 

  2. Aha DW, Kibler D, Albert MK (1991) Instance-based learning algorithms. Mach Learn 6:37–66. https://doi.org/10.1007/BF00153759

    Article  Google Scholar 

  3. Alcantarilla PF, Bartoli A, Davison AJ (2012) KAZE features. In: European Conference on Computer Vision, Berlin, ECCV, vol. 7577. pp 214–227

  4. Arshaghi A, Ashourian M, Ghabeli L (2019) Buzzard optimization algorithm: a nature-inspired metaheuristic algorithm. Majlesi J Electr Eng 13(3):83–98

    Google Scholar 

  5. Bay H, Ess A, Tuytelaars T, Van Gool L (2008) SURF: Speeded Up Robust Features. Comp Vision Image Underst (CVIU) 110(3):346–359. https://doi.org/10.1016/j.cviu.2007.09.014

    Article  Google Scholar 

  6. Broumandnia A, Adeli A (2018) Image steganalysis using improved particle swarm optimization based feature selection. Appl Intell 48(6):1609–1622. https://doi.org/10.1007/s10489-017-0989-x

    Article  Google Scholar 

  7. Fan D-P, Cheng M-M, Liu J-J, Gao S-H, Hou Q, Borji A (2018) Salient objects in clutter: bringing salient object detection to the foreground. ECCV 2018, https://arxiv.org/abs/1803.06091

  8. Fan D-P, Wang W, Cheng M-M, Shen J (2019) Shifting more attention to video salient object detection. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). https://doi.org/10.1109/CVPR.2019.00875

  9. Fan D-P, Ji G-P, Sun G, Cheng M-M, Shen J, Shao L (2020) Camouflaged object detection. IEEE CVPR

  10. Harris C, Stephens M (1988) A combined corner and edge detector. In: Proceedings of 4th Alvey Vision Conference pp 147–151

  11. Haykin SO (1999) Neural networks, a comprehensive foundation, 2nd edn. Prentice Hall, Upper Saddle River

    MATH  Google Scholar 

  12. Işık Ş, Ozkan K (2015) A comparative evaluation of well-known feature detectors and descriptors. Int J Appl Math Electron Comput 3(1):1–6. https://doi.org/10.18100/ijamec.60004

    Article  Google Scholar 

  13. Karabog D, Basturk B (2007) Artificial bee colony (ABC) optimization algorithm for solving constrained optimization problems. In: Foundations of fuzzy logic and soft computing, vol 4529. Springer, Berlin, pp 789–798

    Chapter  Google Scholar 

  14. Kavzoglu T, Colkesen I, Yomralioglu T (2015) Object-based classification with rotation forest ensemble learning algorithm using very high-resolution WorldView-2 image. Remote Sens Lett 6(11):834–843

    Article  Google Scholar 

  15. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks. pp 1942–1948. https://doi.org/10.1109/ICNN.1995.488968

  16. Kodovský J, Fridrich J (2012) Steganalysis of JPEG images using rich models. Proceedings of SPIE. electronic imaging, media watermarking, security, and forensics XIV. https://doi.org/10.1117/12.907495

  17. Lal TN, Chapelle O, Weston J, Elisseeff A (2006) Embedded methods. In: Feature extraction, vol 207. Springer, Berlin, pp 137–165

    Chapter  Google Scholar 

  18. Laliberte AS, Browning DM, Rango A (2012) A comparison of three feature selection methods for object-based classification of subdecimeter resolution UltraCam-L imagery. Int J Appl Earth Obs Geoinf 15:70–78. https://doi.org/10.1016/j.jag.2011.05.011

    Article  Google Scholar 

  19. Le T-N, Nguyen TV, Nie Z, Tran M-T, Sugimoto A (2019) Anabranch network for camouflaged object segmentation. Comp Vision Image Underst (CVIU) 184:45–56. https://doi.org/10.1016/j.cviu.2019.04.006

    Article  Google Scholar 

  20. Leutenegger S, Chli M, Siegwart RY (2011) BRISK: Binary Robust Invariant Scalable Keypoints. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV). pp 2548–2555. https://doi.org/10.1109/ICCV.2011.6126542

  21. Li XL, Shao ZJ, Qian JX (2002) An optimizing method based on autonomous animate: fish swarm algorithm. Proc Syst Eng Theory Pract 22:32–38. https://doi.org/10.12011/1000-6788(2002)11-32

    Article  Google Scholar 

  22. Liao X, Li K, Yin J (2017) Separable data hiding in encrypted image based on compressive sensing and discrete fourier transform. Multimed Tools Appl 76:20739–20753. https://doi.org/10.1007/s11042-016-3971-4

    Article  Google Scholar 

  23. Liao X, Z Q, Ding L (2017) Data embedding in digital images using critical functions. Signal Process Image Commun 58:146–156. https://doi.org/10.1016/j.image.2017.07.006

    Article  Google Scholar 

  24. Liu D, Xia F (2010) Assessing object-based classification: advantages and limitations. Remote Sens Lett 1(4):187–194. https://doi.org/10.1080/01431161003743173

    Article  Google Scholar 

  25. Ma Y, Chen W, Ma X, Xu J, Huang X, Maciejewski R, AKH T (2017) EasySVM: a visual analysis approach for open-box support vector machines. Comput Vis Media 3(2):161–175. https://doi.org/10.1007/s41095-017-0077-5

    Article  Google Scholar 

  26. Matas J, Chum, O, Urban M, Pajdla T (2002) Robust wide-baseline stereo from maximally stable extremal regions. In: Proc of British Machine Vision Conference pp 384–396. https://doi.org/10.1016/j.imavis.2004.02.006

  27. Mohammadi FG, Abadeh MS (2014) Image steganalysis using a bee colony based feature selection algorithm. Eng Appl Artif Intell 31:35–43. https://doi.org/10.1016/j.engappai.2013.09.016

    Article  Google Scholar 

  28. Moradi P, Rostami M (2015) A graph theoretic approach for unsupervised feature selection. Eng Appl Artif Intell 44:33–45

    Article  Google Scholar 

  29. Morigo D, Birattari M, Stützle T (2006) Ant colony optimization. IEEE Comput Intell Mag 1:28–39. https://doi.org/10.1109/MCI.2006.329691

    Article  Google Scholar 

  30. Naeini AA, Babadi M, SMJ M, Amini S (2018) Particle swarm optimization for object-based feature selection of VHSR satellite images. IEEE Geosci Remote Sens Lett 15(3):379–383. https://doi.org/10.1109/LGRS.2017.2789194

    Article  Google Scholar 

  31. Panchal PM, Panchal SR, Shah SK (2013) A comparison of SIFT and SURF. Int J Innov Res Comput Commun Eng 1(2):323–327

    Google Scholar 

  32. Rosten E, Drummond T (2005) Fusing points and lines for high performance tracking. Proc IEEE Int Conf Comput Vis 2:1508–1515. https://doi.org/10.1109/ICCV.2005.236

    Article  Google Scholar 

  33. Sarkar S, Ghosh M, Chatterjee A, Malakar S, Sarkar R (2019) An advanced particle swarm optimization based feature selection method for tri-script handwritten digit recognition, vol 1030. Springer, Berlin, pp 82–94

    Google Scholar 

  34. Shi J, Tomasi C (1994) Good features to track. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition pp 593–600. https://doi.org/10.1109/CVPR.1994.323794

  35. Szeliski R (2010) Computer vision algorithms and applications. Springer, London

    MATH  Google Scholar 

  36. Vapnik VN (1998) Statistical learning theory. Wiley-Interscience, 768 pages

  37. Wang W, Shen J, Yang R, Porikli F (2018) Saliency-aware video object segmentation. IEEE Trans Pattern Anal Mach Intell 40(1):20–33. https://doi.org/10.1109/TPAMI.2017.2662005

    Article  Google Scholar 

  38. Yazdani D, Nasiri B, Sepas-Moghaddam A, Meybodi MR (2013) A novel multi-swarm algorithm for optimization in dynamic environments based on particle swarm optimization. Appl Soft Comput 13(4):2144–2158. https://doi.org/10.1016/j.asoc.2012.12.020

    Article  Google Scholar 

  39. Zhang J, Yu X, Li A, Song P, Liu B, Dai Y (2020) Weakly-Supervised Salient Object Detection via Scribble Annotations IEEE/CVF CVPR 2020, https://arxiv.org/abs/2003.07685

  40. Zhang J, Fan D-P, Dai Y, Anwar S, Saleh FS, Zhang T, Barnes N (2020) UC-Net: Uncertainty Inspired RGB-D Saliency Detection via Conditional Variational Autoencoders. IEEE CVPR 2020 (ORAL), https://arxiv.org/abs/2004.05763

  41. Zhao J-X, Liu J-J, Fan D-P, Cao Y, Yang J-F, Cheng M-M (2019) EGNet: Edge Guidance Network for Salient Object Detection. IEEE International Conference on Computer Vision (ICCV) 2019, pp 8779–8788

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Ashourian.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arshaghi, A., Ashourian, M. & Ghabeli, L. Feature selection based on buzzard optimization algorithm for potato surface defects detection. Multimed Tools Appl 79, 26623–26641 (2020). https://doi.org/10.1007/s11042-020-09236-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-020-09236-3

Keywords

Navigation