Skip to main content
Log in

Two level data encoding approach for reversible data hiding in dual Stego images

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Due to high embedding capacity and security, dual stego-image based data hiding has become so popular. This paper proposes a two-level data encoding approach for reversible data hiding in dual stego-images. In the first level of encoding, the encoded intensities are estimated from the message intensities by assigning lower intensities to higher histogram data and higher intensities to lower histogram data. In the second level of encoding, the encoded intensities are folded by identifying the negative values to obtain the folded intensities. The folded intensities are embedded in the cover image to obtain the dual stego-images. The two-level data encoding process reduces the intensity of secret data which increases the quality of the two stego-images. During the extraction process, the folded intensities are extracted from the dual stego images. The folded intensities are decoded to encoded intensities and then to message intensities to obtain the secret data. This two-level data encoding approach increases the peak signal to noise ratio (PSNR) around 2 dB, and embedding rate (bpp) by 1%when compared to the traditional data hiding approach in dual stego images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. (Archive) CS103 S15 — Picture class (n.d.) http://bits.usc.edu/cs103-sp15/picture/ (accessed July 22, 2019).

  2. X. Cao, S. Member, L. Du, X. Wei, D. Meng, High Capacity Reversible Data Hiding in Encrypted Images by Patch-Level Sparse Representation, (2015) 1–12.

  3. Chang CC, Kieu TD, Chou YC (2007) Reversible Data Hiding Scheme Using Two Steganographic Images, TENCON 2007–2007 IEEE Reg. 10 Conf. 1–4. https://doi.org/10.1109/TENCON.2007.4483783.

  4. Chang CC, Lu TC, Horng G, Huang YH, Hsu YM (2013) A high payload data embedding scheme using dual stego-images with reversibility, ICICS 2013 - Conf. Guid. 9th Int. Conf. Information, Commun. Signal Process. 1–5. https://doi.org/10.1109/ICICS.2013.6782790.

  5. Dragoi I, Coltuc D (2014) Local-prediction-based difference expansion reversible watermarking. IEEE TransImage Process 23:1779–1790

    Article  MathSciNet  Google Scholar 

  6. Emmanuel AUBERT - LCM3B UHP Nancy 1, (n.d.) http://crm2.univlorraine.fr/pages_perso/Aubert/FTenglish/TheoIm/theoim.html (accessed July 22, 2019).

  7. Hong W, Chen M, Chen TS (2017) An efficient reversible image authentication method using improved PVO and LSB substitution techniques. Signal Process Image Commun 58:111–122. https://doi.org/10.1016/j.image.2017.07.001

    Article  Google Scholar 

  8. Huang F, Qu X, Kim HJ, Huang J (2015) Reversible Data Hiding in JPEG Images 8215:1–12. https://doi.org/10.1109/TCSVT.2015.2473235

    Article  Google Scholar 

  9. J.V.C.I.R, Yao H, Qin C, Tang Z, Tian Y (2017) Guided filtering based color image reversible data hiding q. J Vis Commun Image Represent 43:152–163. https://doi.org/10.1016/j.jvcir.2017.01.004

    Article  Google Scholar 

  10. Jung K (2017) Authenticable reversible data hiding scheme with less distortion in dual stego-images. Multimed Tools Appl 77:6225–6241. https://doi.org/10.1007/s11042-017-4533-0

    Article  Google Scholar 

  11. Li M, Li Y (2016) Histogram shifting in encrypted Images with public key cryptosystem for reversible data hiding. Signal Process. https://doi.org/10.1016/j.sigpro.2016.07.002

  12. Li X, Li J, Li B, Yang B (2013) High-fidelity reversible data hiding scheme based on pixel-value-ordering and prediction-error expansion. Signal Process 93:198–205. https://doi.org/10.1016/j.sigpro.2012.07.025

    Article  Google Scholar 

  13. Li X, Zhang W, Gui X, Yang B (2016) Efficient reversible data hiding based on Multiple Histograms Modification 10:2016–2027

    Google Scholar 

  14. Lo C, Hu Y (2014) A novel reversible image authentication scheme for digital images. Signal Process 98:174–185. https://doi.org/10.1016/j.sigpro.2013.11.028

    Article  Google Scholar 

  15. Nikolaidis A (2015) Reversible data hiding in JPEG images utilising zero quantised coefficients. Reversible data hiding in JPEG images utilising zero quantised coefficients 9:560–568. https://doi.org/10.1049/iet-ipr.2014.0689

    Article  Google Scholar 

  16. Ou B, Li X, Zhao Y, Ni R (2015) Efficient color image reversible data hiding based on channel-dependent payload partition and adaptive embedding 108:642–657. https://doi.org/10.1016/j.sigpro.2014.10.012

    Article  Google Scholar 

  17. Qin C, Chang C, Hsu T (2014) Reversible data hiding scheme based on exploiting modification direction with two steganographic images. Multimed Tools Appl 74:5861–5872. https://doi.org/10.1007/s11042-014-1894-5

    Article  Google Scholar 

  18. C. Shaji, I.S. Sam, A new data encoding based on maximum to minimum histogram in reversible data hiding, Imaging Sci J 0 (2019) 1–13. https://doi.org/10.1080/13682199.2019.1592892, 67.

  19. Shi YQ, Reversible Data Hiding, (2005) 1–12. https://doi.org/10.1109/ICIP.2002.1039911.

  20. Test Images (n.d.) https://homepages.cae.wisc.edu/~ece533/images/ (accessed July 22, 2019).

  21. Thodi DM, Rodríguez JJ, Member S (2007) Expansion embedding techniques for Reversible Watermarking 16:721–730

    Google Scholar 

  22. Tian J (2003) Reversible data embedding using a difference expansion. IEEE Trans Circuits Syst Video Technol 13:890–896. https://doi.org/10.1109/TCSVT.2003.815962

    Article  Google Scholar 

  23. Wang Y, Shen J, Hwang M (2018) A Novel Dual Image-based High Payload Reversible Hiding Technique Using LSB Matching 20:801–804. https://doi.org/10.6633/IJNS.201807

    Article  Google Scholar 

  24. Weblet Importer (n.d.) https://www.hlevkin.com/06testimages.htm (accessed July 24, 2019).

  25. Weblet Importer (n.d.) https://www.cs.montana.edu/courses/spring2004/430/lectures/02/lect02.html (accessed July 22, 2019).

  26. Weng S, Zhao Y, Pan J, Ni R (2008) Reversible Watermarking Based on Invariability and Adjustment on Pixel Pairs 15:721–724

    Google Scholar 

  27. Weng S, Pan J, Li L, Zhou L (2016) Reversible data hiding based on an adaptive pixel-embedding strategy and two-layer embedding. Inf. Sci. (NY). https://doi.org/10.1016/j.ins.2016.05.030

  28. Wu H, Dugelay J, Shi Y (2015) Reversible Image Data Hiding with Contrast Enhancement 22:81–85

    Google Scholar 

  29. Zhang X (2011) Reversible data hiding in encrypted image. IEEE Signal Process 18:255–258

    Article  Google Scholar 

  30. Zhang X, Wang S (2006) Efficient Steganographic Embedding by Exploiting Modification Direction, 10 781–783.

  31. Zhang W, Zhao X, Yu N, Li F (2013) Reversible Data Hiding in Encrypted Images by Reserving Room Before Encryption 8:553–562

    Google Scholar 

  32. Luo ZXL, Chen Z, Chen M, Zeng X (2010) Reversible image watermarking using interpolation technique. IEEE Trans Inf Forensics Secur 5:187–193

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Shaji.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaji, C., Sam, I.S. Two level data encoding approach for reversible data hiding in dual Stego images. Multimed Tools Appl 79, 26969–26993 (2020). https://doi.org/10.1007/s11042-020-09273-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-020-09273-y

Keywords