Abstract
People with Color Vision Deficiency (CVD) cannot distinguish some color combinations under normal situations. Recoloring becomes a necessary adaptation procedure. In this paper, in order to adaptively find the key color components in an image, we first propose a self-adapting recoloring method with an Improved Octree Quantification Method (IOQM). Second, we design a screening tool of CVD datasets that is used to integrate multiple recoloring methods. Third, a CVD dataset is constructed with the help of our designed screening tool. Our dataset consists of 2313 pairs of training images and 771 pairs of testing images. Fourth, multiple GANs i.e., pix2pix-GAN [1], Cycle-GAN [2], Bicycle-GAN [3] are used for colorblind data conversion. This is the first ever effort in this research area using GANs. Experimental results show that pix2pix-GAN [1] can effectively recolor unrecognizable colors for people with CVD, and we predict that this dataset can provide some help for color blind images recoloring. Datasets and source are available at: https://github.com/doubletry/pix2pix, https://github.com/doubletry/CycleGAN and https://github.com/doubletry/BicycleGAN.





















Similar content being viewed by others
Notes
website1: http://labs.tineye.com/multicolr/
website2:http://www.color-blindness.com/coblis-color-blindness-simulator/
References
Baker S, Scharstein D, Lewis J, Roth S, Black MJ, Szeliski R (2011) A database and evaluation methodology for optical flow. Int J Comput Vis 92(1):1–31
Bansal A, Russell B, Gupta A (2016) Marr revisited: 2d-3d alignment via surface normal prediction. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 5965–5974
Brettel H, Viénot F, Mollon JD (1997) Computerized simulation of color appearance for dichromats. JOSA A 14(10):2647–2655
Cao Z, Simon T, Wei S-E, Sheikh Y (2016) Realtime multi-person 2d pose estimation using part affinity fields, arXiv:1611.08050
Chen L-C (2018a) Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans Patt Anal Mach Intell 40(4):834–848
Chen X, Duan Y, Houthooft R, Schulman J, Sutskever I, Abbeel P (2016) Infogan: Interpretable representation learning by information maximizing generative adversarial nets, NIPS
Chen L.-C., Papandreou G, Kokkinos I, Murphy K, Yuille AL (2014) Semantic image segmentation with deep convolutional nets and fully connected crfs, arXiv:1412.7062
Chen L.-C., Papandreou G, Schroff F, Adam H (2017) Rethinking atrous convolution for semantic image segmentation, arXiv:1706.05587
Chen L.-C., Zhu Y, Papandreou G, Schroff F, Adam H (2018b) Encoder-decoder with atrous separable convolution for semantic image segmentation, arXiv:1802.02611
Doliotis P, Tsekouras G, Anagnostopoulos C-N, Athitsos V (2009) Intelligent modification of colors in digitized paintings for enhancing the visual perception of color-blind viewers. In: IFIP International conference on artificial intelligence applications and innovations. Springer, New York, pp 293–301
Dollár P, Zitnick CL (2013) Structured forests for fast edge detection. In: Proceedings of the IEEE international conference on computer vision, pp 1841–1848
Donahue J, krähenbühl P, Darrell T (2016) Adversarial feature learning, arXiv:1605.09782
Dosovitskiy A, Fischer P, Ilg E, Hausser P, Hazirbas C, Golkov V, Van Der Smagt P, Cremers D, Brox T (2015) Flownet: Learning optical flow with convolutional networks. In: Proceedings of the IEEE international conference on computer vision, pp 2758–2766
Dumoulin V, Belghazi I, Poole B, Mastropietro O, Lamb A, Arjovsky M, Courville A (2016) Adversarially learned inference, ICLR
Eigen D, Fergus R (2015) Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture. In: Proceedings of the IEEE international conference on computer vision, pp 2650–2658
Eigen D, Puhrsch C, Fergus R (2014) Depth map prediction from a single image using a multi-scale deep network. In: Advances in neural information processing systems, pp 2366–2374
Everingham M, Eslami SMA, Gool LJV, Williams CKI, Winn JM, Zisserman A (2015) The pascal visual object classes challenge: a retrospective,. Int J Comput Vision 111(1):98–136. [Online]. Available: https://doi.org/10.1007/s11263-014-0733-5
Fan D-P, Cheng M-M, Liu J-J, Gao S-H, Hou Q, Borji A (2018) Salient objects in clutter: bringing salient object detection to the foreground. In: Proceedings of the european conference on computer vision (ECCV), pp 186–202
Fan D-P, Wang W, Cheng M-M, Shen J (2019) Shifting more attention to video salient object detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, conference proceedings, pp 8554–8564
Fergus R, Fergus R, Fergus R, Fergus R (2015) Deep generative image models using a laplacian pyramid of adversarial networks. In: International conference on neural information processing systems, pp 1486–1494
Fluck D (2006) Coblis - color blindness simulator. [Online]. Available: http://www.color-blindness.com/coblis-color-blindness-simulator/
Fu K, Zhao Q, Gu IY-H (2018) Refinet: a deep segmentation assisted refinement network for salient object detection. IEEE Trans Multimed 21(2):457–469
Fu K, Zhao Q, Gu IY-H, Yang J (2019) Deepside: a general deep framework for salient object detection. Neurocomputing 356:69–82
Geiger A, Lenz P, Urtasun R (2012) Are we ready for autonomous driving? the kitti vision benchmark suite. In: Conference on computer vision and pattern recognition (CVPR)
Gervautz M, Purgathofer W (1988) A simple method for color quantization: octree quantization. In: New trends in computer graphics. Springer, New York, pp 219–231
Girshick R, Donahue J, Darrell T, Malik J (2014) Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 580–587
Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial nets. In: International conference on neural information processing systems, pp 2672–2680
He K, Gkioxari G, Dollár P., Girshick R (2017) Mask r-cnn. In: Computer vision (ICCV), 2017 IEEE international conference on. IEEE, pp 2980–2988
Huang JB, Chen CS, Jen TC, Wang SJ (2009) Image recolorization for the colorblind. In: IEEE International conference on acoustics, speech and signal processing, pp 1161–1164
Huang CR, Chiu KC, Chen CS (2010) Key color priority based image recoloring for dichromats. Adv Multimed Inform Process - PCM 2010 6298:637–647
Huang L, Yang Y, Deng Y, Yu Y (2015) Densebox: Unifying landmark localization with end to end object detection, arXiv:1509.04874
Isola P, Zhu J-Y, Zhou T, Efros AA (2016) Image-to-image translation with conditional adversarial networks. CVPR 5967–5976
Jégou S., Drozdzal M, Vazquez D, Romero A, Bengio Y (2017) The one hundred layers tiramisu: fully convolutional densenets for semantic segmentation. In: Computer vision and pattern recognition workshops (CVPRW), 2017 IEEE Conference on. IEEE, pp 1175–1183
Jeong J-Y, Kim H-J, Wang T-S, Yoon Y-J, Ko S-J (2011) An efficient re-coloring method with information preserving for the color-blind. IEEE Transa Consumer Electron 57(4)
Katsuhiro N, Manami T, Hiroshi S, Hiroshi O, Mu S, Atsushi H, Isao M, Shin’Ichi I, Nobuyuki F, Kazunori K (2016) A way of color image processing for the colorblinds. Bull Hiroshima Mercant Marine College 38
Khurge DS, Peshwani B (2015) Modifying image appearance to improve information content for color blind viewers. In: Computing Communication Control and Automation (ICCUBEA), 2015 International Conference on. IEEE, pp 611–614
Kim H-J, Jeong J-Y, Yoon Y-J, Kim Y-H, Ko S-J (2012) Color modification for color-blind viewers using the dynamic color transformation. In: Consumer electronics (ICCE), 2012, IEEE international conference on. IEEE, pp 602–603
Kim YK, Kim KW, Yang X (2007) Real time traffic light recognition system for color vision deficiencies. In: Mechatronics and automation, 2007. ICMA 2007. International conference on IEEE, pp 76–81
Kingma DP, Welling M (2013) Auto-encoding variational bayes, ICLR
Larsen ABL, Larochelle H, Winther O (2015) Autoencoding beyond pixels using a learned similarity metric. ICML 1558–1566
Lu X, Wang W, Ma C, Shen J, Shao L, Porikli F (2019) See more, know more: unsupervised video object segmentation with co-attention siamese networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, conference proceedings, pp 3623–3632
Martin DR, Fowlkes CC, Malik J (2004) Learning to detect natural image boundaries using local brightness, color, and texture cues. IEEE Trans Patt Anal Mach Intell 26(5):530–549
Martin CE, Keller J, Rogers SK, Kabrinsky M (2000) Color blindness and a color human visual system model. IEEE Trans Syst Man Cyber - Part A: Syst Humans 30(4):494–500
Mathieu M, Zhao J, Sprechmann P, Ramesh A, Lecun Y (2016) Disentangling factors of variation in deep representations using adversarial training. NIPS 5040–5048
Maurer CR, Qi R, Raghavan V (2003) A linear time algorithm for computing exact euclidean distance transforms of binary images in arbitrary dimensions. IEEE Trans Patt Anal Mach Intell 25(2):265–270
Milić N., Belhadj F, Dragoljub N (2015) The customized daltonization method using discernible colour bins. In: Colour and visual computing symposium (CVCS), 2015. IEEE, pp 1–6
Milić N, Hoffmann M, Tómács T, Novaković D, Milosavljević B (2015) A content-dependent naturalness-preserving daltonization method for dichromatic and anomalous trichromatic color vision deficiencies. J Imaging Sci Technol 59(1):10 504–1
Orii H, Kawano H, Maeda H, Kouda T (2014) Color conversion algorithm for color blindness using self-organizing map. In: Soft computing and intelligent systems (SCIS), 2014 joint 7th international conference on and advanced intelligent systems (ISIS), 15th international symposium on. IEEE, pp 910–913
Rasche K, Geist R, Westall J (2005) Detail preserving reproduction of color images for monochromats and dichromats. IEEE Comput Graph Appl 25 (3):22–30
Russell BC, Torralba A, Murphy KP, Freeman WT (2008) Labelme: a database and web-based tool for image annotation. Int J Comput Vision 77(1-3):157–173
Sharpe LT, Stockman A, Jägle H, Nathans J (1999) Opsin genes, cone photopigments, color vision, and color blindness. Color vision: From genes to perception, 351
Shelhamer E, long J, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: 2015 IEEE conference on computer vision and pattern recognition (CVPR), pp 3431–3440
Silberman N, Hoiem D, Kohli P, Fergus R (2012) Indoor segmentation and support inference from rgbd images. In: European conference on computer vision. Springer, New York, pp 746–760
Stenetorp P, Pyysalo S, Topić G, Ohta T, Ananiadou S, Tsujii J (2012) Brat : a web-based tool for NLP-assisted text annotation. In: Proceedings of the demonstrations session at EACL 2012. Avignon France: Association for computational linguistics
Teney D, Hebert M (2016) Learning to extract motion from videos in convolutional neural networks. In: Asian conference on computer vision. Springer, New York, pp 412–428
Tzutalin (2015) Labelimg. Git code. [Online]. Available: https://github.com/tzutalin/labelImg
Vondrick C, Patterson D, Ramanan D (2013) Efficiently scaling up crowdsourced video annotation. Int J Comput Vis 101(1):184–204
Wandell BA (1995) Foundations of vision. Sinauer Associates Sunderland, MA, vol 8
Wang X, Fouhey D, Gupta A (2015) Designing deep networks for surface normal estimation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 539–547
Wei S-E, Ramakrishna V, Kanade T, Sheikh Y (2016) Convolutional pose machines. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4724–4732
Xie S, Tu Z (2015) Holistically-nested edge detection. In: Proceedings of the IEEE international conference on computer vision, pp 1395–1403
Zhao J-X, Liu J-J, Fan D-P, Cao Y, Yang J, Cheng M-M (2019) Egnet: Edge guidance network for salient object detection. In: Proceedings of the IEEE international conference on computer vision, conference proceedings, pp 8779–8788
Zhao H, Shi J, Qi X, Wang X, Jia J (2017) Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2881–2890
Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A (2017) Scene parsing through ade20k dataset. In: Proceedings of the IEEE conference on computer vision and pattern recognition
Zhu J-Y, Krähenbühl P, Shechtman E, Efros AA (2016) Generative visual manipulation on the natural image manifold. In: European conference on computer vision. Springer, New York, pp 597–613
Zhu J-Y, Park T, Isola P (2017) Unpaired image-to-image translation using cycle-consistent adversarial networkss. In: Computer vision (ICCV), 2017 IEEE international conference on, pp 2242–2251
Zhu J-Y, Zhang R, Pathak D, Darrell T, Efros AA, Wang O, Shechtman (2017) Toward multimodal image-to-image translation. In: Advances in neural information processing systems
Acknowledgements
Supported by National Key R&D Program of China under Grant No. 2019YFB1311600 & Ningbo 2025 Key Project of Science and Technology Innovation (2018B10071).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendix A
Appendix A
More recoloring results are shown in this appendix.
Rights and permissions
About this article
Cite this article
Li, H., Zhang, L., Zhang, X. et al. Color vision deficiency datasets & recoloring evaluation using GANs. Multimed Tools Appl 79, 27583–27614 (2020). https://doi.org/10.1007/s11042-020-09299-2
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11042-020-09299-2