Abstract
With the development of RGB-D cameras, dense point cloud model gains great attention for its information richness and obstacle avoidance features. It can be overlapped to occupancy grid for path planning and navigation applications. But there are redundant information since point cloud models tend to perceive every details in the environment and the computation complexity of traversal increases significantly with scene expansion. A possible solution is the combination of measurements of different granularities from various sensors to construct the environment models in uniform representation. Based on octree occupancy grid and our previous work, we propose a multi-granularity environment perception algorithm, which uniformly represents environment models from various sensors. A probabilistic octree representation is constructed to uniformly express the point cloud models. This representation uniformly fuses the sparse, semi-dense and dense models dynamically through an incremental algorithm along with the camera trajectory. Multiple resolutions of the same model can be obtained at any time by limiting the depth of a query. Experiments demonstrate the effectiveness of our method in minimizing trajectory error on several public available benchmarks and reducing the space complexity of environment models.
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-020-09302-w/MediaObjects/11042_2020_9302_Fig1_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-020-09302-w/MediaObjects/11042_2020_9302_Fig2_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-020-09302-w/MediaObjects/11042_2020_9302_Fig3_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-020-09302-w/MediaObjects/11042_2020_9302_Fig4_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-020-09302-w/MediaObjects/11042_2020_9302_Fig5_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11042-020-09302-w/MediaObjects/11042_2020_9302_Fig6_HTML.png)
Similar content being viewed by others
References
Bahraini MS, Bozorg M, Rad AB (2018) Slam in dynamic environments via ml-ransac. Mechatronics 49:105–118
Bailey T, Nieto J, Guivant J, Stevens M, Nebot E (2006) Consistency of the ekf-slam algorithm. In: Proceedings of International Conference on Intelligent Robots and Systems(ICIRS), pp 3562–3568
Cadena C, Carlone L, Carrillo H, Latif Y, Scaramuzza D, Neira J, Reid I, Leonard JJ (2016) Past, present, and future of simultaneous localization and mapping: Toward the robust-perception age. IEEE Trans Robot 32 (6):1309–1332
Caruso D, Engel J, Cremers D (2015) Large-scale direct slam for omnidirectional cameras. In: Proceedings of IEEE International Conference on Intelligent Robots and Systems (ICIRS), pp 141–148
Castle RO, Klein G, Murray D (2011) Wide-area augmented reality using camera tracking and mapping in multiple regions. Comput Vis Image Underst 115 (6):854–867
Chen J, Li X, Wang M, Ma L, Xu B (2019) Fast compressive tracking combined with kalman filter. Multimed Tools Appl 78(16):22463–22477
Cho H, Kim EK, Kim S (2018) Indoor slam application using geometric and icp matching methods based on line features. Robot Auton Syst 100:206–224
De Gregorio D, Di Stefano L (2017) Skimap: an efficient mapping framework for robot navigation. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA), pp 2569–2576
Engel J, Schöps T, Cremers D (2014) Lsd-slam: Large-scale direct monocular slam. In: Proceedings of European Conference on Computer Vision (ECCV), vol 8690, pp 834–849
Engel J, Stuckler J, Cremers D (2015) Large-scale direct slam with stereo cameras. In: Proceedings of IEEE International Conference on Intelligent Robots and Systems (ICIRS), pp 1935–1942
Geiger A, Lenz P, Stiller C, Urtasun R (2013) Vision meets robotics: the Kitti dataset. Int J Robot Res 32(11):1231–1237
Hao-Sheng C, Ge Z, Yang-Dong Y (2016) Optical image based multi-granularity follow-up environment perception algorithm. J Softw 27(10):2661–2675
He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of Computer Vision and Pattern Recognition (CVPR), pp 770–778
Hornung A, Kai MW, Bennewitz M, Stachniss C, Burgard W (2013) Octomap: an efficient probabilistic 3d mapping framework based on octrees. Auton Robot 34(3):189–206
Jampani V, Kiefel M, Gehler PV (2016) Learning sparse high dimensional filters: Image filtering, dense crfs and bilateral neural networks. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 4452–4461
Klein G, Murray D (2008) Parallel tracking and mapping for small ar workspaces. In: Proceedings of IEEE International Symposium on Mixed and Augmented Reality (ISMAR), pp 1–10
Labschutz M, Bruckner S, Groller ME, Hadwiger M, Rautek P (2016) Jittree: a just-in-time compiled sparse gpu volume data structure. IEEE Trans Vis Comput Graph 22(1):1025–1034
Lowry SM, Sunderhauf N, Newman P, Leonard JJ, Cox DD, Corke P, Milford M (2016) Visual place recognition: a survey. IEEE Trans Robot 32(1):1–19
Maturana D, Scherer S (2015) Voxnet: a 3d convolutional neural network for real-time object recognition. In: Proceedings of IEEE International Conference on Intelligent Robots and Systems (ICIRS), pp 922–928
Meagher D (1982) Geometric modeling using octree encoding. Comput Gr Image Process 19(2):129–147
Mur-Artal R, Montiel JMM, Tardós J. D. (2017) Orb-slam: a versatile and accurate monocular slam system. IEEE Trans Robot 31(5):1147–1163
Murartal R, Tardos JD (2017) Orb-slam2: an open-source slam system for monocular, stereo, and rgb-d cameras. IEEE Trans Robot 33(5):1255–1262
Newcombe RA, Fox D, Seitz SM (2015) Dynamic fusion: Reconstruction and tracking of non-rigid scenes in real-time. In: Proceedings of Computer Vision and Pattern Recognition (CVPR), pp 343–352
Newcombe RA, Izadi S, Hilliges O, Molyneaux D, Kim D, Davison A, Kohi P, Shotton J, Hodges S, Fitzgibbon A (2012) Kinectfusion: Real-time dense surface mapping and tracking. In: Proceedings of IEEE International Symposium on Mixed and Augmented Reality (ISMAR), pp 127–136
Newcombe RA, Lovegrove SJ, Davison A (2011) Dtam: Dense tracking and mapping in real-time. In: Proceedings of IEEE International Conference on Computer Vision (ICCV), pp 2320–2327
Omeadhra C, Tabib W, Michael N (2019) Variable resolution occupancy mapping using gaussian mixture models. IEEE Robot Autom Lett 4(2):2015–2022
Platinsky L, Davison A, Leutenegger S (2017) Monocular visual odometry: Sparse joint optimisation or dense alternation?. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA), pp 5126–5133
Pugh W (1989) Skip lists: a probabilistic alternative to balanced trees. In: Communications of the ACM, vol 33, pp 437–449
Riegler G, Ulusoy AO, Geiger A (2017) Octnet: Learning deep 3d representations at high resolutions. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 6620–6629
Ronneberger O, Fischer P, Brox T (2015) U-net: Convolutional networks for biomedical image segmentation. In: Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention (ICMICCAI). Springer, pp 234–241
Schauer J, Nuechter A (2018) The peopleremover – removing dynamic objects from 3d point cloud data by traversing a voxel occupancy grid. IEEE Robot Autom Lett 3(3):1679–1686
Semwal VB, Kumar C, Mishra PK, Nandi GC (2016) Design of vector field for different subphases of gait and regeneration of gait pattern. IEEE Trans Autom Sci Eng 1–7
Semwal VB, Nandi GC (2016) Generation of joint trajectories using hybrid automate-based model: a rocking block-based approach. IEEE Sensors J 16(14):5805–5816
Sturm J, Engelhard N, Endres F, Burgard W, Cremers D (2012) A benchmark for the evaluation of rgb-d slam systems. In: Proceedings of IEEE International Conference on Intelligent Robots and Systems (ICIRS), pp 573–580
Sumikura S, Shibuya M, Sakurada K (2019) Openvslam: a versatile visual slam framework. In: Proceedings of the 27th ACM International Conference on Multimedia (ACM MM), pp 2292–2295
Sun Y, Ming L, Meng QH (2017) Improving rgb-d slam in dynamic environments: a motion removal approach. Robot Auton Syst 89:110–122
Szegedy C, Ioffe S, Vanhoucke V, Alemi AA (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Proceedings of AAAI Conference on Artificial Intelligence (AAAI), pp 1–14
Tatarchenko M, Dosovitskiy A, Brox T (2017) Octree generating networks: Efficient convolutional architectures for high-resolution 3d outputs. In: Proceedings of IEEE International Conference on Computer Vision (ICCV), pp 2107–2115
Vespa E, Funk N, Kelly P, Leutenegger S (2019) Adaptive-resolution octree-based volumetric slam. In: Proceedings of International Conference on 3D Vision (3DV), pp 654–662
Vespa E, Nikolov N, Grimm M, Nardi L, Kelly PHJ, Leutenegger S (2018) Efficient octree-based volumetric slam supporting signed-distance and occupancy mapping. IEEE Robot Autom Lett 3(2):1144–1151
Wan T, Du S, Xu Y, Xu G, Li Z, Chen B, Gao Y (2019) Rgb-d point cloud registration via infrared and color camera. Multimed Tools Appl 1–24
Wurm KM, Hornung A, Bennewitz M, Stachniss C, Burgard W (2010) Octomap: a probabilistic, flexible, and compact 3d map representation for robotic systems. In: Proceedings of the ICRA workshop on best practice in 3D perception and modeling for mobile manipulation (IROS), Anchorage
Xu B, Li W, Tzoumanikas D, Bloesch M, Davison A, Leutenegger S (2019) Mid-fusion: Octree-based object-level multi-instance dynamic slam. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA), pp 5231–5237
Younes G, Asmar D, Shammas E, Zelek J (2017) Keyframe-based monocular slam: Design, survey, and future directions. Robot Auton Syst 98:67–88
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Zhang, G., Wu, B., Xu, YL. et al. Multi-granularity environment perception based on octree occupancy grid. Multimed Tools Appl 79, 26765–26785 (2020). https://doi.org/10.1007/s11042-020-09302-w
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11042-020-09302-w