Abstract
This study introduces RealityBrush, a novel augmented reality (AR) authoring system that allows designers to quickly and easily create realistic virtual objects by capturing and utilizing the kinetic properties of everyday physical objects in the early stages of design. The RealityBrush system consists of a handheld device, a data analysis module and an AR feedback module. The handheld device, which is made in the shape of a rod, is equipped with a depth camera and a force sensor at the tip. When a user holds the device and pokes a physical object, the local force applied to the object and the resulting deformations of the object are measured simultaneously. By analyzing the relationship between measured force and deformations, the RealityBrush system can identify two kinetic properties of the poked object: stiffness and motion resistance. The user can then use the handheld device as a 3D brush to create a virtual object in the air and assign the measured kinetic properties to the created virtual object. Finally, the system’s physics engine allows the user to interact with the created object by using the device to poke or push the object. The technical evaluation showed that the system can successfully extract the stiffness and motion resistance of everyday objects. We also report initial user feedback on AR authoring using the RealityBrush system.













Similar content being viewed by others
Change history
07 February 2023
The original version of this paper was updated to insert the missing supplementary file.
14 July 2022
A Correction to this paper has been published: https://doi.org/10.1007/s11042-022-13455-1
References
3D Systems Phantom Premium. Available at https://www.3dsystems.com/haptics-devices/3d-systems-phantom-premium (2020/04/12)
Adobe Aero. Retrieved from https://www.adobe.com/products/aero.html (2020/04/24)
Bickel B, Bächer M, Otaduy MA, Matusik W, Pfister H, Gross M (2009) Capture and modeling of non-linear heterogeneous soft tissue. In: ACM transactions on graphics (TOG), vol 28. ACM, p 89
Bickel B, Bächer M, Otaduy MA, Lee HR, Pfister H, Gross M, Matusik W (2010) Design and fabrication of materials with desired deformation behavior. ACM Trans Graph (TOG) 29(4):63
Bowden FP, Bowden FP, Tabor D (2001) The friction and lubrication of solids, vol 1. Oxford University Press, Oxford
Carfagni M, Furferi R, Governi L, Servi M, Uccheddu F, Volpe Y (2017) On the performance of the intel sr300 depth camera: metrological and critical characterization. IEEE Sensors J 17(14):4508–4519
Fernandez-Sanchez E, Diaz J, Ros E (2013) Background subtraction based on color and depth using active sensors. Sensors 13(7):8895–8915
Follmer S, Ishii H (2012) Kidcad: digitally remixing toys through tangible tools. In: Proceedings of the SIGCHI conference on human factors in computing systems, CHI ’12. ACM, New York, NY, USA, pp 2401–2410
Hartmann B, Morris MR, Benko H, Wilson AD (2010) Pictionaire: supporting collaborative design work by integrating physical and digital artifacts. In: Proceedings of the 2010 ACM conference on computer supported cooperative work, CSCW ’10. ACM, New York, NY, USA, pp 421–424
Hettiarachchi A, Nanayakkara S, Yeo KP, Shilkrot R, Maes P (2013) Fingerdraw: more than a digital paintbrush. In: Proceedings of the 4th augmented human international conference, AH ’13. ACM, New York, NY, USA, pp 1–4
Holm R, Stauder E, Wagner R, Priglinger M, Volkert J (2002) A combined immersive and desktop authoring tool for virtual environments. In: Proceedings IEEE Virtual Reality 2002, pp 93–100
Hong S, Jeong E, Heo S, Lee B (2018) Fdsense: estimating young’s modulus and stiffness of end effectors to facilitate kinetic interaction on touch surfaces. In: Proceedings of the 31th annual ACM symposium on user interface software and technology, UIST ’18. ACM, New York, NY, USA
Israel JH, Wiese E, Mateescu M, Zöllner C, Stark R (2009) Investigating three-dimensional sketching for early conceptual design—results from expert discussions and user studies. Comput Graph 33(4):462–473
Jensen SQ, Fender A, Müller J (2018) Inpher: inferring physical properties of virtual objects from mid-air interaction. In: Proceedings of the 2018 CHI conference on human factors in computing systems, CHI ’18. ACM, New York, NY, USA, pp 530:1–530:5
Jeon S, Choi S (2009) Haptic augmented reality: taxonomy and an example of stiffness modulation. Presence: Teleoperators and Virtual Environments 18(5):387–408
Kattinakere RS, Grossman T, S Subramanian (2007) Modeling steering within above-the-surface interaction layers. In: Proceedings of the SIGCHI conference on human factors in computing systems, CHI ’07. Association for Computing Machinery, New York, NY, USA, pp 317–326
Keefe DF, Feliz DA, Moscovich T, Laidlaw DH, LaViola JrJ J (2001) Cavepainting: a fully immersive 3d artistic medium and interactive experience. In: Proceedings of the 2001 symposium on Interactive 3D graphics. Citeseer, pp 85–93
Kim H, Kim S, Lee B, Pak J, Sohn M, Lee G, Lee W (2008) Digital rubbing: playful and intuitive interaction technique for transferring a graphic image onto paper with pen-based computing. In: CHI ’08 extended abstracts on human factors in computing systems, CHI EA ’08. ACM, New York, NY, USA, pp 2337–2342
Kuchenbecker KJ, Fiene J, Niemeyer G (2006) Improving contact realism through event-based haptic feedback. IEEE Trans Vis Comput Graph 12 (2):219–230
Lee GA, Kim GJ, Park C-M (2002) Modeling virtual object behavior within virtual environment. In: Proceedings of the ACM symposium on virtual reality software and technology, VRST ’02. ACM, New York, NY, USA, pp 41–48
Lee GA, Kim GJ, Billinghurst M (2005) Immersive authoring: what you experience is what you get (wyxiwyg). Commun ACM 48(7):76–81
Liu H, Philipose M, Sun M -T (2014) Automatic objects segmentation with rgb-d cameras. J Vis Commun Image Represent 25(4):709–718
Lorensen WE, Cline HE (1987) Marching cubes: a high resolution 3d surface construction algorithm. In: ACM siggraph computer graphics, vol 21. ACM, pp 163–169
Ma ZZJ (2018) Current-based force input/output control for novel haptic interaction using the inFORCE shape display. PhD thesis, Massachusetts Institute of Technology
Nguyen C, DiVerdi S, Hertzmann A, Liu F (2017) Vremiere: in-headset virtual reality video editing. Association for Computing Machinery, New York, NY, USA, pp 5428–5438
Property information, young’s modulus and specific stiffness. Retrieved from http://www-materials.eng.cam.ac.uk/mpsite/properties/non-IE/stiffness.html (2020/04/27)
Ryokai K, Marti S, Ishii H (2004) I/o brush: drawing with everyday objects as ink. In: Proceedings of the SIGCHI conference on human factors in computing systems, CHI ’04. ACM, New York, NY, USA, pp 303–310
Ryokai K, Marti S, Ishii H (2005) Designing the world as your palette. In: CHI ’05 extended abstracts on human factors in computing systems, CHI EA ’05. ACM, New York, NY, USA, pp 1037–1049
Ryokai K, Marti S, Ishii H (2007) I/o brush: beyond static collages. In: CHI ’07 extended abstracts on human factors in computing systems, CHI EA ’07. ACM, New York, NY, USA, pp 1995–2000
Tilt Brush by Google. Retrieved from https://www.tiltbrush.com/ (2020/04/24)
Umakatsu A, Kiyokawa K, Mashita T, Takemura H (2014) Implementation and evaluation of pinch-n-paste : direct texture transfer interaction in augmented reality. Transactions of the Virtual Reality Society of Japan 19(2):141–151
Unreal Engine VR Mode. Retrieved from https://docs.unrealengine.com/en-US/Engine/Editor/VR/index.html (2020/04/24)
Wasenmüller O, Stricker D (2016) Comparison of kinect v1 and v2 depth images in terms of accuracy and precision. In: Asian conference on computer vision. Springer, pp 34–45
Wickiewicz TL, Roy RR, Powell PL, Perrine JJ, Edgerton VR (1984) Muscle architecture and force-velocity relationships in humans. J Appl Physiol 57 (2):435–443
Wozniewski M, Warne P (2011) Towards in situ authoring of augmented reality content. In: Proceedings ISMAR
Wu J, Yildirim I, Lim JJ, Freeman B, Tenenbaum J, Garnett R (2015) Galileo: perceiving physical object properties by integrating a physics engine with deep learning. In: Cortes C, Lawrence N D, Lee D D, Sugiyama M (eds) Advances in neural information processing systems, vol 28. Curran Associates, Inc., pp 127–135
Yamauchi J, Mishima C, Nakayama S, Ishii N (2010) Aging-related differences in maximum force, unloaded velocity and power of human leg multi-joint movement. Gerontology 56(2):167–174
Acknowledgements
This research was funded by the National Research Foundation of Korea (2020R1A2C4002146), the Korea Creative Content Agency (R2019020010), and partly by Ministry of Trade, Industry and Energy (10077849).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
The original online version of this article was revised: The author name "Woontack Woo" was incorrectly spelled as "Woontaek Woo."
Electronic supplementary material
Below is the link to the electronic supplementary material.
(mp4 113 MB)
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Kim, H., Hong, S., Kim, J. et al. RealityBrush: an AR authoring system that captures and utilizes kinetic properties of everyday objects. Multimed Tools Appl 80, 31135–31158 (2021). https://doi.org/10.1007/s11042-020-09332-4
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11042-020-09332-4