Skip to main content

Advertisement

Log in

A survey of security threats and defense on Blockchain

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Blockchain provides a trusted environment for storing information and propagating transactions. Owing to the distributed property and integrity, blockchain has been employed in various domains. However, lots of studies prove that the security mechanism of blockchain exposes its vulnerability especially when the blockchain suffers attacks. This work provides a systematic summary of the security threats and countermeasures on blockchain. We first review the working procedure and its implementation techniques. We then summarize basic security properties of blockchain. From the view of the blockchain’s architecture, we describe security threats of blockchain, including weak anonymity, vulnerability of P2P network, consensus mechanism, incentive mechanism and smart contract. We then describe the related attacks and summarize the current representative countermeasures which improve anonymity and robustness against security threats respectively. Finally, we also put forward future research directions on consensus, incentive mechanisms, privacy preservation and encryption algorithm to further enhance security and privacy of the blockchain-based multimedia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Androulaki E, Karame GO, Roeschlin M et al (2013). Evaluating user privacy in Bitcoin. In: International Conference on Financial Cryptography and Data Security

  2. Apostolaki M, Zohar A, Vanbever L (2017). Hijacking Bitcoin: routing attacks on Cryptocurrencies. S&P. https://doi.org/10.1109/SP.2017.29

  3. Atzei N, Bartoletti M, Cimoli T (2017). A survey of attacks on Ethereum smart contracts (SoK). In: International Conference on Principles of Security and Trust https://doi.org/10.1007/978-3-662-54455-6_8

  4. Babaioff M, Dobzinski S, Oren S, Zohar A (2011) On bitcoin and red balloons. Acm Sigecom Exchanges 10(3):5–9. https://doi.org/10.1145/2325702.2325704

    Article  Google Scholar 

  5. Banach R (2020). Blockchain applications beyond the cryptocurrency casino: the punishment not reward blockchain architecture. CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE https://doi.org/10.1002/cpe.5749

  6. Banasik W, Dziembowski S , Malinowski D (2016). Efficient zero-knowledge contingent payments in Cryptocurrencies without scripts. In: European Symposium on Research in Computer Security https://doi.org/10.1007/978-3-319-45741-3_14

  7. Barber S, Boyen X, Shi E, Uzun E (2013). Bitter to better—how to make Bitcoin a better currency. In: International Conference on Financial Cryptography and Data Security https://doi.org/10.1007/978-3-642-32946-3_29

  8. Bellare M, Miner S K (1999). A forward-secure digital signature scheme .https://doi.org/10.1007/3-540-48405-1_28

  9. Ben-Sasson E, Chiesa R, Genkin E, Tromer E, Virza M (2016). SNARKs for C: verifying program executions succinctly and in zero knowledge. In: CRYPTO

  10. Bentov I, Pass R, Shi E (2019). Snow white: provably secure proofs of stake in: International conference on financial cryptography and data security

  11. Bhowmik D, Abhayaratne GC (2016) Quality scalability aware watermarking for visual content. IEEE Press 25(11):5158–5172. https://doi.org/10.1109/TIP.2016.2599785

    Article  MathSciNet  MATH  Google Scholar 

  12. Bhowmik D, Feng T (2017). The multimedia blockchain: a distributed and tamper-proof media transaction framework. In: International conference on digital signal processing (DSP)

  13. Bhowmik D, Oakes M, Abhayaratne C (2016) Visual attention-based image watermarking. IEEE Access 4:8002–8018. https://doi.org/10.1109/ACCESS.2016.2627241

    Article  Google Scholar 

  14. Biryukov A, Pustogarov I (2015). Proof-of-work as anonymous micropayment: rewarding a tor relay. In: International Conference on Financial Cryptography and Data Security

  15. Bissias G, Ozisik AP, Levine BN, Liberatore M (2014). Sybil-resistant mixing for bitcoin. In: Workshop on Privacy in the Electronic Society https://doi.org/10.1145/2665943.2665955

  16. Bonneau J, Narayanan A, Miller A, Clark J, Kroll JA, Felten EW et al (2014) Mixcoin: anonymity for bitcoin with accountable mixes. Lect Notes Comput Sci 8437:486–504. https://doi.org/10.1007/978-3-662-45472-5\_31

    Article  Google Scholar 

  17. Bonneau J, Narayanan A, Miller A, Clark J, Kroll JA, Felten EW et al (2015). Sok: research perspectives and challenges for bitcoin and cryptocurrencies. In: IEEE Security and Privacy ,SP

  18. Cai W, Jiang W, Xie K, Zhu Y, Liu Y, Shen T (2020) Dynamic reputation-based consensus mechanism: real-time transactions for energy blockchain. International Journal Of Distributed Sensor Networks 16(3):155014772090733. https://doi.org/10.1177/1550147720907335

    Article  Google Scholar 

  19. Cai Z, Qu J, Liu P, Yu J (2019) A Blockchain smart contract based on light-weighted quantum blind signature. IEEE Access 7:138657–138668. https://doi.org/10.1109/access.2019.2941153

    Article  Google Scholar 

  20. Chaum D (1982). Blind signatures for untraceable payments. Proc Crypto:199–203. https://doi.org/10.1007/978-1-4757-0602-4_18

  21. Cheng J, Xu R, Tang X, Sheng V, Cai C (2018) An abnormal network flow feature sequence prediction approach for DDoS attacks detection in big data environment. Computers, Materials and Continua 55(1):95–119. https://doi.org/10.3970/cmc.2018.055.095

    Article  Google Scholar 

  22. Cho JH, Chen IR, Chan KS (2016) Trust threshold based public key management in mobile ad hoc networks. Ad Hoc Netw 44:58–75. https://doi.org/10.1016/j.adhoc.2016.02.014

    Article  Google Scholar 

  23. Courtois NT , Bahack L (2014). On subversive miner strategies and block withholding attack in bitcoin digital currency.https://arxiv.org/abs/1402.1718

  24. Cremers C, Horvat M (2016) Improving the ISO/IEC 11770 standard for key management techniques. Int J Inf Secur 15(6):659–673. https://doi.org/10.1007/s10207-015-0306-9

    Article  Google Scholar 

  25. Decker C, Seidel J, Wattenhofer R (2014). Bitcoin meets strong consistency. Comput Therm Sci https://doi.org/10.1145/2833312.2833321

  26. Decker C, Wattenhofer R (2013). Information propagation in the Bitcoin network. In:13-th IEEE International conference on peer-to-peer computing

  27. Decker C, Wattenhofer R (2015). A fast and scalable payment network with bitcoin duplex micropayment channels. In: Stabilization, Safety, and Security of Distributed Systems 3–18. https://doi.org/10.1007/978-3-319-21741-3_1

  28. Delmolino K, Arnett M, Kosba A, Miller A, Shi E (2016). Step by step towards creating a safe smart contract: lessons and insights from a Cryptocurrency lab. In: International Conference on Financial Cryptography & Data Security https://doi.org/10.1007/978-3-662-53357-4_6

  29. Dziembowski S, Faust S, Hostáková K (2018). General State Channel Networks. CCS.https://doi.org/10.1145/3243734.3243856

  30. Eyal I (2015). The Miner’s dilemma. In: Computer ence https://doi.org/10.1109/SP.2015.13

  31. Eyal I, Sirer EG (2013). Majority is not enough: Bitcoin mining is vulnerable. https://doi.org/10.1007/978-3-662-45472-5_28

  32. Fultz N, Grossklags J (2009). Blue versus red: towards a model of distributed security attacks. In: proceedings of the 13th International conference on financial cryptography and data security (FC)

  33. Gao Y, Chen X, Sun Y, Yang Y, Niu X et al (2018) A secure Cryptocurrency scheme based on post-quantum Blockchain. IEEE ACCESS 6:27205–27213. https://doi.org/10.1109/ACCESS.2018.2827203

    Article  Google Scholar 

  34. Gao S, Li Z, Peng Z , Xiao B (2020). Bobtail: power adjusting and bribery racing: novel mining attacks in the Bitcoin system. In: the 2019 ACM SIGSAC conference. https://doi.org/10.1145/3319535.3354203

  35. Gazi P, Kiayias A, Zindros D (2019). Proof-of-stake Sidechains. In: IEEE symposium on security and privacy: 19-23. https://doi.org/10.1109/SP.2019.00040

  36. George D, Cedric F, Markulf K, Bryan P (2013). Pinocchio coin: building Zerocoin from a succinct pairing-based proof system. In: Proceedings of the First ACM Workshop on Language Support for Privacy-enhancing Technologies https://doi.org/10.1145/2517872.2517878

  37. Gervais A, Karame GO, Capkun V, Capkun S (2014) Is Bitcoin a decentralized currency? IEEE Security & Privacy 12:54–60. https://doi.org/10.1109/MSP.2014.49

    Article  Google Scholar 

  38. Gervais A, Karame GO, Wüst K, Glykantzis V, Ritzdorf H, Capkun S (2016). On the security and performance of proof of work Blockchains. In: the 2016 ACM SIGSAC conference

  39. Gong S,Lee C (2020). BLOCIS: Blockchain-based cyber threat intelligence sharing framework for Sybil-resistance. ELECTRONICS. 9(3). https://doi.org/10.3390/electronics9030521

  40. Green M, Miers I (2016). Bolt: anonymous payment channels for decentralized currencies. https://doi.org/10.1145/3133956.3134093

  41. Gutoski G, Stebila D (2015). Hierarchical deterministic Bitcoin wallets that tolerate key leakage. In: International Conference on Financial Cryptography and Data Security. https://doi.org/10.1007/978-3-662-47854-7_31

  42. He Y, Li H, Cheng X, Liu Y, Yang C, Sun L (2018) A Blockchain based truthful incentive mechanism for distributed P2P applications. IEEE ACCESS 6:27324–27335. https://doi.org/10.1109/ACCESS.2018.2821705

    Article  Google Scholar 

  43. Heilman E, Alshenibr L, Baldimtsi F, Scafuro A, Goldberg S (2017). TumbleBit: an untrusted Bitcoin-compatible anonymous payment hub. In: Network & Distributed System Security Symposium. https://doi.org/10.14722/ndss.2017.23086

  44. Heilman E, Kendler A, Zohar A, Goldberg S (2015). Eclipse Attacks on Bitcoin’s Peer-to-Peer Network. In: Usenix Conference on Security Symposium

  45. Houda ZA, Hafid AS, Khoukhi L (2019) Cochain-SC: an intra- and inter-domain Ddos mitigation scheme based on Blockchain using SDN and smart contract. IEEE ACCESS 7:98893–98907. https://doi.org/10.1109/ACCESS.2019.2930715

    Article  Google Scholar 

  46. Johnson B, Laszka A, Grossklags J, Vasek M, Moore T (2014). Game-theoretic analysis of DDoS attacks against Bitcoin mining pools. https://doi.org/10.1007/978-3-662-44774-1_6

  47. Juels A , Kosba A , Shi E (2016). The ring of Gyges: investigating the future of criminal smart contracts.In: Acm Sigsac conference

  48. Kalra S, Goel S, Dhawan M, Sharma S (2018). Zeus: analyzing safety of smart contracts. In: network and distributed system security symposium. https://doi.org/10.14722/ndss.2018.23092

  49. Karame GO, Androulaki E, Capkun S (2012). Double-spending fast payments in bitcoin. In: proceedings of the 2012 ACM conference on computer and communications security. https://doi.org/10.1145/2382196.2382292

  50. Kiayias A, Russell A, David B, Oliynykov R (2016). Ouroboros: a provably secure proof-of-stake blockchain protocol. https://doi.org/10.1007/978-3-319-63688-7_12

  51. Kiffer L, Rajaraman R, Shelat A (2018). A better method to analyze blockchain consistency. In: ACM SIGSAC Conference on Computer and Communications Security:729–744. https://doi.org/10.1145/3243734.3243814

  52. Kosba A, Miller A, Shi E, Wen Z, Papamanthou C (2016). Hawk: the Blockchain model of cryptography and privacy-preserving smart contracts. In: IEEE Symposium on Security and Privacy (SP) https://doi.org/10.1109/SP.2016.55

  53. Kpoll JA, Davey IC, Felten EW (2013). The economics of Bitcoin mining or, Bitcoin in the presence of adversaries. In: Proceedings of WEIS

  54. Kumaresan R, Bentov I (2014). How to use Bitcoin to incentivize correct computations. Proceedings of the ACM Conference on Computer and Communications Security https://doi.org/10.1145/2660267.2660380

  55. Kumaresan R, Moran T, Bentov I (2015). How to use Bitcoin to play decentralized poker. In: proceedings of the 22nd ACM SIGSAC conference on computer and communications security. https://doi.org/10.1145/2810103.2813712

  56. Kwon H, Hahn C, Kang K, Hur J (2019) Secure deduplication with reliable and revocable key management in fog computing. Peer-to-Peer Networking and Applications 12(4):850–864. https://doi.org/10.1007/s12083-018-0682-9

    Article  Google Scholar 

  57. Kwon Y, Kim D, Son Y, Vasserman E, Kim Y (2017). Be selfish and avoid dilemmas: fork after withholding (faw) attacks on bitcoin. In: proceedings of the 2017 ACM SIGSAC conference on computer and communications security

  58. Li J, Chen X, Li M, Li J, Lee PPC, Lou W (2014) Secure deduplication with efficient and reliable convergent key management. IEEE trans parallel Distrib Syst 25(6):1615–1625. https://doi.org/10.1109/TPDS.2013.284

    Article  Google Scholar 

  59. Liu J, Liu Z (2019) A survey on security verification of Blockchain smart contracts. IEEE Access 7:77894–77904. https://doi.org/10.1109/ACCESS.2019.2921624

    Article  Google Scholar 

  60. Liu Z, Luong NC, Wang W, Niyato D, Wang P, Liang YC, Kim DI (2019) A survey on Blockchain:a game theoretical perspective. IEEE ACCESS 7:47615–47643. https://doi.org/10.1109/ACCESS.2019.2909924

    Article  Google Scholar 

  61. Luu L, Saha R , Parameshwaran I, Saxena P, Hobor A (2015). On power splitting games in distributed computation: the case of bitcoin pooled mining. In: IEEE 28th computer security foundations symposium

  62. Ma MX, Shi GZ, Li FH (2019) Privacy-oriented Blockchain-based distributed key management architecture for hierarchical access control in the IoT scenario. IEEE ACCESS 7:34045–34059. https://doi.org/10.1109/ACCESS.2019.2904042

    Article  Google Scholar 

  63. Maximilian W, Uwe Z (2018). Smart contracts: security patterns in the Ethereum ecosystem and solidity. In: International Workshop on Blockchain Oriented Software Engineering (IWBOSE) https://doi.org/10.1109/IWBOSE.2018.8327565

  64. Miers I, Garman C, Green M, Rubin AD (2013). Zerocoin: anonymous distributed E-cash from Bitcoin. In: Security and Privacy (SP) https://doi.org/10.1109/SP.2013.34

  65. Miller VS (1985). Use of elliptic curves in cryptography. In: Conference on the Theory and Application of Cryptographic Techniques

  66. Moore T, Christin N (2013). Beware the middleman: empirical analysis of Bitcoin exchange risk. In: International Conference on Financial Cryptography and Data Security

  67. Mwitende G, Ali I, Eltayieb N, Wang B, Li F (2020) Authenticated key agreement for blockchain-based WBAN. Telecommun Syst 74:347–365. https://doi.org/10.1007/s11235-020-00662-0

    Article  Google Scholar 

  68. Nakamoto S (2008). Bitcoin: a peer-to-peer electionic cash system

  69. Russell O’ Connor, Piekarska M (2017). Enhancing Bitcoin transactions with covenants. In: International Conference on Financial Cryptography and Data Security https://doi.org/10.1007/978-3-319-70278-0_12

  70. Otte P, Vos MD, Pouwelse J (2017) TrustChain: a Sybil-resistant scalable blockchain. Futur Gener Comput Syst 107:770–780. https://doi.org/10.1016/j.future.2017.08.048

    Article  Google Scholar 

  71. Pass R, Seeman L, Shelat A (2017) Analysis of the Blockchain protocol in asynchronous networks. Lect Notes Comput Sci 10211:643–673. https://doi.org/10.1007/978-3-319-56614-6\_22

    Article  MathSciNet  MATH  Google Scholar 

  72. Pavlidis A, Dimolianis M, Giotis K, Anagnostou L, Kostopoulos N, Tsigkritis T, Kotinas I, Kalogeras D, Maglaris V (2020). Orchestrating DDoS mitigation via blockchain-based network provider collaborations. Knowl Eng Rev 35(e16). https://doi.org/10.1017/S0269888920000259

  73. Qi F, He D, Zeadally S et al (2018). A survey on privacy protection in blockchain system.https://doi.org/10.1016/j.jnca.2018.10.020

  74. Rahouti M, Xiong K, Ghani N (2018) Bitcoin concepts, threats, and machine-learning security solutions. IEEE Access 6:67189–67205. https://doi.org/10.1109/ACCESS.2018.2874539

    Article  Google Scholar 

  75. Reuben G (2011) Bitcoin: an innovative alternative digital currency. Hastings Science & Technology Law Journal 4(1):159

    Google Scholar 

  76. Rosenfeld M (2014). Analysis of Hashrate-based double Spending.arXiv:1402.2009

  77. Ruffing T, Moreno-Sanchez P (2017). Mixing confidential transactions: comprehensive transaction privacy for Bitcoin. https://doi.org/10.1007/978-3-319-70278-0_8

  78. Sako K (1995). Receipt-free mix-type voting scheme-a practical solution to the implementation of a voting booth-. Proc of Eurocrypt https://doi.org/10.1007/3-540-49264-X_32

  79. Samaniego M, Deters R (2016). Blockchain as a service for IoT. In: IEEE International Conference on Internet of Things&IEEE Green Computing and Communications

  80. Samaniego M, Deters R (2016). Hosting virtual IoT resources on edge-hosts with Blockchain. In: IEEE International conference on computer and information technology (CIT)

  81. Sayeed S, Marco-Gisbert H, Caira T (2020). Smart Contract: Attacks and Protections. https://doi.org/10.1109/ACCESS.2020.2970495

  82. Schrijvers O, Bonneau J, Boneh D, Roughgarden T (2016). Incentive compatibility of Bitcoin mining Pool reward functions. https://doi.org/10.1007/978-3-662-54970-4_28

  83. PW Shor. (1994). Algorithms for quantum computation: discrete logarithms and factoring. In: proceedings 35th annual symposium on foundations of computer science. 124-134

  84. Singh SK, Salim MM, Cho M, Cha J, Pan Y, Park JH (2019). Smart contract-based Pool hopping attack prevention for Blockchain networks. SYMMETRY-BASEL 11(7). https://doi.org/10.3390/sym11070941

  85. Sun X, Sopek M, Wang QL, Kulicki P (2019) Towards quantum-secured permissioned Blockchain: signature, consensus, and logic. ENTROPY 21(9). https://doi.org/10.3390/e21090887

  86. Tang C, Wu L, Wen G, Zheng Z (2020) Incentivizing honest Mining in Blockchain Networks: a reputation Approach. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS 67(1):117–121. https://doi.org/10.1109/TCSII.2019.2901746

    Article  Google Scholar 

  87. Tosh DK, Shetty S, Liang X, Kamhoua CA et al (2017). Security implications of blockchain cloud with analysis of block withholding attack. In: 17th IEEE/ACM International symposium on cluster, cloud and grid computing (CCGRID)

  88. Valentam L, Rowan B (2013). Blindcoin: blinded, accountable mixes for bitcoin. In: Financial Cryptography and Data Security https://doi.org/10.1007/978-3-662-48051-9_9

  89. Vasek M, Thornton M, Moore T (2014). Empirical analysis of denial-of-service attacks in the Bitcoin ecosystem. In: International Conference on Financial Cryptography and Data Security

  90. Velner Y, Teutsch J, Luu L (2017). Smart contracts make Bitcoin mining pools vulnerable. https://doi.org/10.1007/978-3-319-70278-0_19

  91. Wang X, He J, Xie Z, Zhao G, Cheung SC (2019) ContractGuard: defend Ethereum smart contracts with embedded intrusion detection. IEEE Trans Serv Comput 13(2):314–328. https://doi.org/10.1109/TSC.2019.2949561

    Article  Google Scholar 

  92. Wang W, Hoang D T, Hu P et al (2018). A survey on consensus mechanisms and mining strategy management in Blockchain networks. https://doi.org/10.1109/ACCESS.2019.2896108

  93. Wang L, Shen X, Li J, Shao J, Yang Y (2018) Cryptographic primitives in blockchains. J Netw Comput Appl 127:43–58. https://doi.org/10.1016/j.jnca.2018.11.003

    Article  Google Scholar 

  94. Wu D, Liu X, Yan X, Peng R, Li G (2019) Equilibrium analysis of bitcoin block withholding attack: a generalized model. Reliab Eng Syst Saf 185:318–328. https://doi.org/10.1016/j.ress.2018.12.026

    Article  Google Scholar 

  95. Xu G, Liu Y, Khan PW (2020) Improvement of the DPoS consensus mechanism in Blockchain based on vague sets. IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 16(6):4252–4259. https://doi.org/10.1109/TII.2019.2955719

    Article  Google Scholar 

  96. Xu C, Wang K, Li P et al (2019) Making big data open in edges: a resource-efficient Blockchain-based approach. IEEE transactions on parallel and distributed systems 30(4):870–882. https://doi.org/10.1109/TPDS.2018.2871449

    Article  Google Scholar 

  97. Yang H, Yuan JQ, Yao HP, Yao QY, Yu A, Zhang J (2020) Blockchain-based hierarchical trust networking for JointCloud. IEEE Internet Things J 7(3):1667–1677. https://doi.org/10.1109/JIOT.2019.2961187

    Article  Google Scholar 

  98. Yao S, Chen J, He K, Du R, Zhu T, Chen X (2018) PBCert: privacy-preserving Blockhain-based certificate status validation toward mass storage management. IEEE Access 7:6117–6128. https://doi.org/10.1109/ACCESS.2018.2889898

    Article  Google Scholar 

  99. Yin W, Wen QY, Li WM, Zhang H, Jin ZP (2018) An anti-quantum transaction authentication approach in Blockchain. IEEE ACCESS 6:5393–5401. https://doi.org/10.1109/ACCESS.2017.2788411

    Article  Google Scholar 

  100. Zamani M, Movahedi M, Raykova M (2018). RapidChain scaling Blockchain via full Sharding. In: ACM SIGSAC Conference https://doi.org/10.1145/3243734.3243853

  101. Zhang S, Lee JH (2019) Double-spending with a Sybil attack in the Bitcoin decentralized network. IEEE transactions on Industrial Informatics 15(10):5715–5722. https://doi.org/10.1109/TII.2019.2921566

    Article  Google Scholar 

  102. Zhang R, Xue R, Liu L et al (2019). Security and privacy on Blockchain. https://doi.org/10.1145/3316481

  103. Ziegeldorf JH, Grossmann F, Henze M, Inden N, Wehrle K (2015). CoinParty: secure multi-party mixing of Bitcoins. In: The Fifth ACM Conference on Data and Application Security and Privacy https://doi.org/10.1145/2699026.2699100

  104. Ziegeldorf JH, Matzutt R, Henze M, Grossmann F, Wehrle K (2018) Secure and anonymous decentralized Bitcoin mixing. Futur Gener Comput Syst 80:448–466. https://doi.org/10.1016/j.future.2016.05.018

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Hainan Provincial Natural Science Foundation of China (Grant No. 2019RC041 and 2019RC098); National Natural Science Foundation of China (Grant No. 61762033).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luyi Xie.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, J., Xie, L., Tang, X. et al. A survey of security threats and defense on Blockchain. Multimed Tools Appl 80, 30623–30652 (2021). https://doi.org/10.1007/s11042-020-09368-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-020-09368-6

Keywords