Skip to main content
Log in

Face clustering via learning a sparsity preserving low-rank graph

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Face clustering aims to group the face images without any label information into clusters, and has recently attracted considerable attention in machine learning and data mining. Many graph based clustering methods have been proposed and among which sparse representation (SR) and low-rank representation (LRR) are two representative methods for affinity graph construction. The clustering result may be inaccurate if the affinity graph is constructed with low quality. In this paper, we propose a novel face clustering method via learning a sparsity preserving low-rank graph (LSPLRG), where the initial affinity graph is derived on the sparse coefficients without any a priori graph or similarity matrix. In addition, an adaptive weighted matrix is imposed on the data reconstruction errors to enhance the role of important features, while a constraint on the representation matrix is to reduce the redundant features. By integrating the local distance regularization term into LRR, LSPLRG could exploit the global and local structures of data simultaneously. These appealing properties allow LSPLRG to well capture the intrinsic structure of data, and thus has potential to improve clustering performance. Experiments conducted on several face image databases demonstrate the effectiveness and robustness of LSPLRG compared with several state-of-the-art subspace clustering methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html.

  2. http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html

  3. http://www2.ece.ohio-state.edu/~aleix/ARdatabase.html

  4. http://vis-www.cs.umass.edu/lfw/

References

  1. Basri R, Jacobs DW (2003) Lambertian reflectance and linear subspaces. IEEE Trans Patt Anal Mach Intell 25(2):218–233

    Article  Google Scholar 

  2. Benhur A, Horn D, Siegelmann H, Vapnik V (2002) Support vector clustering. J Mach Learn Res 2(2):125–137

    MATH  Google Scholar 

  3. Boyd S, Parikh N, Chu E, Peleato B, Eckstein J (2011) Distributed optimization and statistical learning via the alternating direction method of multipliers. Found Trends Mach Learn 3(1):1–122

    Article  MATH  Google Scholar 

  4. Brukstein A, D Donoho M (2009) Elad, from sparse solutions of systems of equations to sparse modeling of signals and images. SIAM Rev 51(1):34–81

    Article  MathSciNet  Google Scholar 

  5. Cai D, He X, Han J (2005) Document clustering using locality preserving indexing. IEEE Trans Know Data Eng 17(12):1624–1637

    Article  Google Scholar 

  6. Cai D, He X, Han J, Huang TS (2011) Graph regularized nonnegative matrix factorization for data representation. IEEE Trans Patt Anal Mach Intell 33(8):1548–1560

    Article  Google Scholar 

  7. Candes EJ, Recht B (2009) Exact matrix completion via convex optimization. Found Comput Math 9(6):717–772

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen S, Donoho DL, Saunders MA (2001) Atomic decomposition by basis pursuit. Siam Rev 43(1):129–159

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen J, Yang J (2014) Robust subspace segmentation via low-rank representation. IEEE Trans Syst Man, Cybern 44(8):1432–1445

    Google Scholar 

  10. Donoho D (2006) For most large underdetermined systems of linear equations the minimal 1-norm solution is also the sparsest solution. Commun Pure Appl Math 59 (6):797–829

    Article  MathSciNet  MATH  Google Scholar 

  11. Dornaika F, Kejani M, Bosaghzadeh A (2017) Graph construction using adaptive local hybrid coding scheme. Neural Netw 91–101

  12. Eckstein J, Bertsekas DP (1992) On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math Program 55(3):293–318

    Article  MathSciNet  MATH  Google Scholar 

  13. Elhamifar E, Vidal R (2013) Sparse subspace clustering: algorithm, theory, and applications. IEEE Trans Pattern Anal Mach Intell 35(11):2765–2781

    Article  Google Scholar 

  14. Fan D, Zhang S, Wu Y, Liu Y, Cheng M, Ren B, Rosin PL (2019) Scoot: a perceptual metric for facial sketches. Int Conf Comput Vision 5612–5622

  15. Fang X, Xu Y, Li X, Lai Z, Wong WK (2016) Robust semi-supervised subspace clustering via non-negative low-rank representation. IEEE Trans on Syst Man, Cybern 46(8):1828–1838

    Google Scholar 

  16. Glowinski R, Tallec PL (1989) Augmented Lagrangian and operator-splitting methods in nonlinear mechanics. Math Comput 58(197)

  17. Khan S, Hussain A, Usman M (2018) Reliable facial expression recognition for multi-scale images using weber local binary image based cosine transform features. Multimed Tools Appl 77(1):1133–1165

    Article  Google Scholar 

  18. Khan S, Hussain A, Usman M, Nazir M, Riaz N, Mirza A (2014) Robust face recognition using computationally efficient features. J Intell Fuzzy Syst 27(6):3131–3143

    Article  Google Scholar 

  19. Khan S, Ishtiaq M, Nazir M, Shaheen M (2018) Face recognition under varying expressions and illumination using particle swarm optimization. J Comput Sci 94–100

  20. Khan S, Usman M, Riaz N (2015) Face recognition via optimized features fusion. J Intell Fuzzy Syst 28(4):1819–1828

    Article  Google Scholar 

  21. Lin Z, Chen M, Ma Y (2011) The augmented Lagrange multiplier method for exact recovery of corrupted low-rank Matrices. Neural Inform Process Sys 1–20

  22. Liu G, Li P (2016) Low-rank matrix completion in the presence of high coherence. IEEE Trans Signal Process 64(21):5623–5633

    Article  MathSciNet  MATH  Google Scholar 

  23. Liu G, Lin Z, Yan S, Sun J, Yu Y, Ma Y (2013) Robust recovery of subspace structures by low-rank representation. IEEE Trans Patt Analy Mach Intell 35(1):171–184

    Article  Google Scholar 

  24. Lu C, Feng J, Lin Z, Mei T, Yan S (2019) Subspace clustering by block diagonal representation. IEEE Trans Pattern Anal Mach Intell 41 (2):487–501

    Article  Google Scholar 

  25. Luxburg UV (2007) A tutorial on spectral clustering. Stat Comput 17(4):395–416

    Article  MathSciNet  Google Scholar 

  26. Macqueen J (1967) Some methods for classification and analysis of multivariate observations. In: Proceedings of the fifth berkeleysymposium on mathematical statistics and probability, pp 281–297

  27. Munir A, Hussain A, Khan S, Nadeem M, Arshid S (2018) Illumination invariant facial expression recognition using selected merged binary patterns for real world images. Optik 1016–1025

  28. Ng A, Jordan M, Weiss Y (2002) On spectral clustering: analysis and an algorithm. Neural Inform Process Syst 849–856

  29. Nie F, Wang X, Jordan M, Huang H (2016) The constrained laplacian rank algorithm for graph-based clustering. In: Proceedings of the thirtieth aaai conference on artificial intelligence, pp 1969–1976

  30. Qiao L, Chen S, Tan X (2010) Sparsity preserving projections with applications to face recognition. Pattern Recognit 43(1):331–341

    Article  MATH  Google Scholar 

  31. Rao S, Tron R, Vidal R, Ma Y (2010) Motion segmentation in the presence of outlying, incomplete, or corrupted trajectories. IEEE Trans Patt Anal Mach Intell 32(10):1832–1845

    Article  Google Scholar 

  32. Shi J, Malik J (2000) Normalized cuts and image segmentation. IEEE Trans Pattern Anal Mach Intell 22(8):888–905

    Article  Google Scholar 

  33. Vidal R (2011) Subspace clustering. IEEE Signal Process Mag 28 (2):52–68

    Article  Google Scholar 

  34. Wang Q, Lin J, Yuan Y (2016) Salient band selection for hyperspectral image classification via manifold ranking. IEEE Trans Neural Netw 27 (6):1279–1289

    Article  Google Scholar 

  35. Wen J, Han N, Fang X, Fei L, Yan K, Zhan S (2018) Low-rank preserving projection via graph regularized reconstruction. IEEE Trans on Syst Man, and Cybern 1–13

  36. Wen J, Zhang B, Xu Y, Yang J, Han N (2018) Adaptive weighted nonnegative low-rank representation. Pattern Recognit 81:326–340

    Article  Google Scholar 

  37. Xu L, Neufeld J, Larson B, Schuurmans D (2005) Maximum margin clustering. Neural Inform Process Syst 1537–1544

  38. Xu R, Wunsch D (2005) Survey of clustering algorithms. IEEE Trans Neural Netw 16(3):645–678

    Article  Google Scholar 

  39. Yang J, Yuan X (2012) Linearized augmented Lagrangian and alternating direction methods for nuclear norm minimization. Math Comput 82(281):301–329

    Article  MathSciNet  MATH  Google Scholar 

  40. Yao X, Han J, Zhang D, Nie F (2017) Revisiting co-saliency detection: a novel approach based on two-stage multi-view spectral rotation co-clustering. IEEE Trans Image Process 26(7):3196–3209

    Article  MathSciNet  MATH  Google Scholar 

  41. Yin M, Gao J, Lin Z (2016) Laplacian regularized low-rank representation and its applications. IEEE Trans Pat Anal Mach Intell 38(3):504–517

    Article  Google Scholar 

  42. Zhang C, Hu Q, Fu H, Zhu P, Cao X (2017) Latent multi-view subspace clustering. Comput Vision Pattern Recognit 4333–4341

  43. Zhang X, Xu C, Sun X, Baciu G (2016) Schatten-q regularizer constrained low rank subspace clustering model. Neurocomputing. 182:36–47

    Article  Google Scholar 

  44. Zhao J, Hou Q, Ren B, Cheng M, Rosin P (2018) FLIC: fast linear iterative clustering with active search. Nat Conf Artif Intell 4(4):333–348

    Google Scholar 

  45. Zhao J, Liu J, Fan D, Cao Y, Yang J, Cheng M (2019) EGNEt: Edge guidance network for salient object detection. Int Conf Comput Vision 8779–8788

  46. Zheng M, Bu J, Chen C, Wang C, Zhang L, Qiu G, Cai D (2011) Graph regularized sparse coding for image representation. IEEE Trans Image Process 20(5):1327–1336

    Article  MathSciNet  MATH  Google Scholar 

  47. Zheng J, Yang P, Chen S, Shen G, Wang W (2017) Iterative re-constrained group sparse face recognition with adaptive weights learning. IEEE Trans Image Process 26(5):2408–2423

    Article  MathSciNet  MATH  Google Scholar 

  48. Zhou T, Zhang C, Gong C, Bhaskar H, Yang J (2020) Multiview latent space learning with feature redundancy minimization. IEEE Trans on Syst Man, Cybern 50(4):1655–1668

    Google Scholar 

  49. Zhou T, Zhang C, Peng X, Bhaskar H, Yang J (2019) Dual shared-specific multiview subspace clustering. IEEE Trans Syst Man, Cybern 1–14

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grant no. 61572393, 71701021 and 41601437, the Basic Science Research of Shaanxi province under Grant no. 2018JQ1038, the Fundamental Research Funds for the Central Universities in Chang’an University under Grant no. 300102120201, and the Special Fund for Basic Scientific Research of Central Colleges in Chang’an University under Grant no. 310812163504.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueli Song.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Zhang, J., Song, X. et al. Face clustering via learning a sparsity preserving low-rank graph. Multimed Tools Appl 79, 29179–29198 (2020). https://doi.org/10.1007/s11042-020-09392-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-020-09392-6

Keywords

Navigation