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Abstract
In this paper, we propose a quadtree based approach to capture the spatial information of medical
images for explaining nonlinear SVM prediction. In medical image classification, inter-
pretability becomes important to understand why the adopted model works. Explaining an
SVM prediction is difficult due to implicit mapping done in kernel classification is uninfor-
mative about the position of data points in the feature space and the nature of the separating
hyperplane in the original space. The proposed method finds ROIs which contain the dis-
criminative regions behind the prediction. Localization of the discriminative region in small
boxes can help in interpreting the prediction by SVM. Quadtree decomposition is applied
recursively before applying SVMs on sub images and model identified ROIs are highlighted.
Pictorial results of experiments on various medical image datasets prove the effectiveness
of this approach. We validate the correctness of our method by applying occlusion methods.

Keywords Non linear classification · Interpretability · Localization · Quadtree

1 Introduction

Machine learning models are required not only to be optimized for task performance but
also to fulfil other auxiliary criteria like interpretability. If a model can explain its prediction
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which can be converted into knowledge giving the insight of the domain, the model is
considered to be interpretable [14].

SVM classifies the linearly separable datasets with high accuracy, but if the nonlinear
dataset needs to be classified, we apply kernel trick to transform the data into another dimen-
sion. These kernel SVMs use implicit mapping making it challenge to have an institutive
understanding of the prediction.Though the model classifies the data with high accuracy, the
separating hyperplane is unknown. The hyperplane can be used to classify a new instance,
but the nature of the hyperplane is not known in the feature space. The explanation of
instances becoming support vectors is also unexplainable. Hence, to explain the predictions
of nonlinear SVM is a challenge, and the model behaves like a black-box.

The interpretation of the results becomes vital in the case of medical image classification.
The diagnosis of a medical condition without determining the association of the underlying
disease with the manifestation is unacceptable. However, we can observe that in medical
image classification, the manifestation of the disease is a global function of the entire space
and depends on specific local phenomena. These regions of interest may be identified and
associated with the disease and can be used as a pointer and explanation of a particular
medical condition.

When we apply SVMs as a decision-support tool in medical image classification, the
model needs to be human interpretable, so that the decisions taken by an expert on the
basis of the model becomes acceptable and credible [10, 19]. A Quadtree decomposition
approach may be used with SVMs to localize those ROIs to explain the decisions. When
SVM is applied on these ROIs, the classification results are predicted on the basis of the
local phenomenon captured by these discriminative regions and hence more interpretable.

In this paper, we propose a deductive-nomological model using quadtree to interpret
the SVMs classification for medical image datasets. We apply the quadtree decomposition
recursively before applying SVMs in a hierarchical manner on images and sub images and
highlight various discriminative regions which are predicted as malignant according to our
SVM based model. These model identified ROIs are compared with the given ROIs to check
the correctness of the interpretability model. These regions support an expert to understand
the cause of prediction. The primary contributions of this work are as follows:

1. A quad-tree based image decomposition method to interpret the prediction made
by SVM. The decomposition allows localization of the discriminative regions in
small boxes, which contain the information needed to explain the SVM prediction.
The ensemble based decision trained at every tree height enables discard spurious
predictions, which in turn allows better interpretability of the classifier.

In the upcoming sections the contents are structured as follows: In Section 2, we have
explained nonlinear SVM and its opaqueness. In Section 3, we have proposed our approach
of using a quadtree to interpret SVMs in medical image datasets. Section 4 highlights the
results on medical image datasets. Finally, Section 5 contains our conclusion.

2 Related work

Interpretability requires that the models which are made should be simple, which can help
to explain their decisions. The existing relationship between model accuracy, its complex-
ity and interpretability does not allow a transparent decision process. Even the existing
model interpretation methods extract parallel mathematical rules which remain semi-human
interpretable.
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The approaches to make black-box nature of SVMs interpretable can largely be divided
into two categories; rule extraction and visualization. In [5], rule extraction techniques have
been categorized into four sections; (i) closed-box, (ii) using support vectors, (iii) using sup-
port vector and decision boundaries in combination, and (iv) using training data along with
hyperplane. For rule extraction, we can prioritize features and find fuzzy rules or generate
a decision tree to interpret the model [25]. Fuzzy rules have a syntax similar to familiar
languages which are quite simple to make decisions. Sequential covering algorithm can be
modified to generate rules using the support vectors of a tuned SVM. The feature which has
more discriminative power will have a higher priority in the ordering of rules[7]. Another
approach in [26] combines the rules with hyper-rectangular boundaries. Support vectors are
used to find cross points between the lines along each axis extended from support vector
of a class and decision boundary. The hyper-rectangular rules are derived from the cross-
points. Cross-points also detect the support vectors of other class and a set of rules is made
using the tuned hyper-rectangular rules which exclude these support vectors. The problem
with this approach is time, as rule generation takes far longer than SVM training and time
is one of the prime concerns for on-line data streams. In [17] SVMs are collaborated with
decision trees for rule generation to predict the protein secondary structure. Decision trees
are constructed using a resulting training set which is generated by training the SVM using
original training set. In this approach number of rules would be very high, which is also dif-
ficult to comprehend. In [6] an iterative learning approach is used to extract the rules, but it
requires a domain expert to verify the correctness of final rules.

The rules extraction approaches are good measures of interpretability for numeric data,
but in the case of non-numeric data, i.e., image, audio, or video, a visualization approach is
required. In [20] trained SVMs are visualized using nomograms, which represent the entire
model graphically on a sheet regardless of the number of features. After training the SVM,
univariate logistic regression is employed to obtain the effect vector and the intercept on
the log-odds scale. The terms of effect vector give an effect function which is visualized in
nomograms with the intercept. They gave the idea of a decomposable kernel for visualiza-
tion. In [30], the idea of projecting the data on the direction of decision boundary is used
for feature selection. In [40] input data is projected onto a two-dimensional self-organizing
map nonlinearly, giving a SVM visualization algorithm. In [9], data is projected onto a
two-dimensional plane. The location of support vectors on this plane is used to identify the
importance of the plane and the variables forming this plane. But this approach is interac-
tive and requires domain expertise if the data is high dimensional and thus not interpretable
intuitively.

There are various semi-supervised learning methods which use SVMs to classify the
images. These methods assume that if two images are close enough, they would induce
similar conditional distribution. So to classify an unlabeled image, it becomes important
to analyze the local geometry of that image. In [38] hessian regularization is used with
SVMs to deal with image annotation problem on the cloud. This method works well when
the distribution of unlabeled data is estimated precisely. Thus a large number of unlabeled
data is required which in turn requires huge storage and computing capabilities for better
performance. In [22], a graph p-laplacian regularization is used with SVMs for scene recog-
nition. This approach preserves local similarity of data and reduces the cost of computation
using approximation algorithm. In [23] hypergraphs and p-laplacian regularization are used
for image recognition. The methods exploit the local geometry of the data distribution and
improves the computational efficiency. All these manifold regularization methods used with
SVM improve the accuracy of classification but do not explain the visual interpretability
aspect of classification.

29355



Multimedia Tools and Applications (2020) 79:29353–29373

SVMs have been used to classify various types of medical images like MRIs, WSIs, X-
rays, CT scans to diagnose brain tumors, breast cancer, diabetic retinopathy, tuberculosis
and COVID-19 etc. In [1, 8, 24, 28, 32] brain MRIs are used to diagnose brain cancer, brain
tumor and Alzheimer. In [1, 28] wavelet transform is applied on the data and then SVM is
used for binary classification. In [8], SVM classification along with CRF-based hierarchical
regularization is used to enhance the accuracy of tumor prediction. In [24] skull masking
is used as a preprocessing step before applying SVMs. In [32] Alzheimer is diagnosed
by applying linear SVMs along with classification trees on the brain images. In [18, 35]
mammography images are classified using SVMs for benign and malignant masses, but in
[18] ROIs are passed as input to the model. In [2, 16, 43] chest X-Ray images are used to
predict tuberculosis and covid-19 using SVM classifier but do not focus on interpretability.

Various medical image classification models proposed in the past highlighting ROIs, use
various diverse algorithms but mostly they don’t exploit the power of SVM. In [42] CNNs
are used for mammograms segmentation in a pre-processed image to detect the suspicious
regions. This approach tries to classify the mammograms using texture and shape features
but to achieve better segmentation results, CNN parameters need to be optimized. In [41],
regression activation map is applied after pooling layer of CNN model to interpret the clas-
sification of diabetic retinopathy. These regression activation maps highlight the ROIs on
the basis of severity. In [37], a linear SVM is used with special-anatomical regulariza-
tion to classify Cuingnet’s Alzheimer’s disease vs. cognitive normals dataset. In addition
to this, a group lasso penalty is used to induce structural penalty for identifying ROIs. In
[13] curvelet level moments-based feature extraction technique has been used for mam-
mogram classification which does not loose any information of the original space. These
features were computed on limited ROIs, which contain the prospective abnormality. The
method does not use a nonlinear feature reduction approach. In [27] classification of dense
ROIs is done using taxonomic indices. After extracting texture regions, SVM classifier was
used to classify the mass regions but does not deal with interpretability of results. In [4]
a hybrid bag-of-visual-words based classifier as an ensemble of Gaussian mixture model
and support vector machine is applied on diabetic retinopathy (DR) images. The system is
measured using various performance parameters such as specificity, accuracy, sensitivity,
etc. for statistical implementation. In [33] a unified DR-lesion detector has been proposed
by introducing discrimination of bright lesions by extracting local feature descriptors and
color histogram features from local image patches. In [3] multiscale AM-FM based decom-
position is used to discriminate normal and DR images. In this technique, the lesion map is
inferred by a set of frequency-domain based features which describe the image as a whole.

3 SVM interpretability

Interpretability of the SVM classification requires explanation of its prediction through
textual or visual artifacts that provide qualitative or quantitative understanding of the rela-
tionship between salient input constituents and the prediction. SVM defines a hyperplane
separation boundary using (1):

yi( �w · �x − b) ≥ 1, for i = 1, . . . , n. (1)

where �x is data, yi is label, �w is the vector that subtends a 90◦ angle on the hyperplane and
b is bias.

min || �w||
subject to yi( �w · �xi − b) ≥ 1, for i = 1, . . . , n (2)
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Solving the above optimization problem for �w and b shall give us the classifier.
The maximum-margin hyperplane is completely decided by the points that lie nearest to it
and these data points are known as support vectors.

In Kernel SVM, we have a kernel function k which satisfies k( �xi, �xj ) = φ( �xi) · φ( �xj ). It
is known that �w satisfies (3) in the transformed space.

�w =
n∑

i=1

ciyiφ( �xi), (3)

where ci is obtained by solving (4)

max f (c1 . . . cn) =
n∑

i=1

ci − 1

2

n∑

i=1

n∑

j=1

yicik( �xi, �xj )yj cj

subject to
n∑

i=1

ciyi = 0, and 0 ≤ ci ≤ (2nλ)−1∀i (4)

For computing the class of the new points, (5) is used:

�z �→ sign( �w · φ(�z) − b) = sign

([
n∑

i=1

ciyik( �xi, �z)
]

− b

)
(5)

Kernel trick transforms the data into another dimension and the features which play the
vital role in prediction, may not correspond to any of the features in original space. The
separating hyperplane is also unknown in original space. In case of medical image data,
where each pixel represents one dimension, an SVM considers almost all the attributes to
interpret the prediction results, making it complicated for human consumption. This non-
interpretability persists even if the contribution of all the attributes can be determined. In
these cases, various salient components can be used to explain the results, which may not
be actual input attributes.

4 Proposed ROI-stitching algorithm

In medical image classification, diseases like cancer, diabetic retinopathy, etc., the predic-
tion of disease is not a global function of the entire space, rather the disease manifests
locally and has a spatially localized phenomenon. The presence of disease can be observed
by multiple local regions in the image, which may co-occur in isolation. Various CNN
based algorithms focus on most distinguishable ROIs and overlook other important parts of
image [34, 44]. To visually perceive the image’s classification we need to find a relation-
ship between the prediction model and input image. It is important to localize the ROIs to
understand the cause of prediction. We can segment the image to localize the discriminative
regions causing the prediction. When we segment an image, we divide it into more mean-
ingful regions, where neighboring pixels bear similar characteristics and hence making it
easier to analyze the prediction. In medical image classification, when we apply nonlinear
SVMs, the cause of prediction may not apparently be human interpretable. If we segment an
image hierarchically and then apply SVMs in a cascaded manner, we can localize the lesions
and explain the predictions. The idea is to apply SVM again on the segmented portions of
an image if the image itself is predicted as disease prone and hence to distinguish the ROIs
from neighboring segments which may reflect significantly different characteristics.

In the proposed method, we employ Quadtree decomposition to localize those regions
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Fig. 1 Flowchart of the proposed method. A(xi) indicates all the ancestors of xi

which influence and explain model’s decision. Through Quadtree decomposition, the model
processes a relatively smaller data region which contains crucial features and highlights the
ROIs in the image. We use following steps to find the ROIs:

1. Decompose the images using quadtree approach up to certain levels of tree.
2. Train SVMs, an SVM for each level of tree except the root level.
3. For a test image, predict the result for each node in each level by its own SVM.
4. Mark only those nodes in the final result which have (l - 1) fold fortification of their

decision towards being a malignant region.
5. Finally, connect all the nodes which are marked using 4-connectivity in order to unearth

the underlying ROI.

All these steps are depicted in Fig. 1.
This approach helps to preserve the spatial correlation between the features. The model

is unsupervised in a sense that it predicts the ROIs without any prior information of probable
candidate regions.

4.1 Quadtree decomposition

Quadtree is a region splitting and merging based segmentation method. This approach parti-
tions an image into multiple regions having similarity on the basis of predefined criteria[31].
In Quadtree each node has exactly four branches except the leaf nodes (Fig. 2) [36] [21].
One need not to keep all the nodes at any levels (Fig. 3) and can further sub divide only those

Fig. 2 Quadtree
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Fig. 3 A quadtree constructed from an image

nodes which are essential for prediction (Fig. 2b). Quadtree decomposition has following
steps:

1. Start to split a region into four branches.
2. When adjacent regions are found similar, merge by dissolving the common edges.

Quadtree decomposition has a feature-preserving capability [11] and it can extract the
details of images, thus more feature information can be extracted from the visual important
ROIs than from the monotone areas of the image[39].
For instance, let X be the original image and we divide X up to p levels using quadtree
decomposition. X is divided into ni sub images at level i, i.e.

X =
(
xi
j

)
, 1 ≤ i ≤ p, 1 ≤ j ≤ ni, ni = 4i (6)

When SVM is applied on each sub image of X up to p levels, we get a vector DX

Dxi =
[
Dxi

1
Dxi

2
. . . Dxi

ni

]
(7)

where Dxj
i is defined as prediction on the sub image xj

i ; and the set Dxi for level i corre-

sponds to the prediction of ith level of representation.
When SVM predicts class C = {+1,−1} for image X and using quad tree the feature vec-

tor
(
Dxj

i

)
also predicts the same class C from level 1 to p consistently, it signifies that

sub image xj
p or collection of sub images at level p, on which Dxp predicts same class C,

are the spatially localized regions causing such prediction. All the steps of Algorithm 1 are
explained using figures depicting the effects on mammography images.

4.2 Pre-processing

Any medical image contains patient specific information such as watermark, name, tech-
nology used etc. The actual decision from SVM should not be influenced with such details,
hence in the first step, all these informations are eliminated by finding the connected
components and discarding the smaller one (Fig. 4) by employing (8):

Xk = argmax conComp(Xk) (8)
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Fig. 4 Preprocessing

where xk is the kth image. By using (8), the smaller connected component is discarded,
giving a clean image by removing labels that adversely affect SVMs’ decision ability. Each
image is divided into ni patches at level i up to level p; where p is application and domain
expert dependent. All the patches having irrelevant data beyond threshold are labeled as
benign.

4.3 Training and testing of SVMs

After preprocessing, images are decomposed using quadtree up to p levels using (6).
For training of SVMs, patches of training images from each level’s nodes are extracted
and corresponding SVMs for each level have been trained. RBF SVM has been used for
classification.

f (xi
j ) =

sp∑

l=1

αlylexp

(
−|xi

j − xi,l |2
2σ 2

)
(9)

where xi
j is the j th patch of the image at ith level, Xi,l is lth support vector of SVM corre-

sponding to ith level, sp is number of support vectors at that level, α is weight and σ is a
free parameter.
For each level of quadtree, a separate SVM has been trained. When testing our method, the
respective SVMs are used at each level for prediction of malignancy in the node’s image.
The predictions of all the nodes are agglomerated by (10):

p∑

i=1

∑ni

j=1 Di
j

ni

(10)

where Di
j is the decision for j th node in ith level. As median is a better centrality measure

than mean and it is robust to outliers, the threshold for deciding if a lesion is present in the
test image or not, (11) is used:

τ = median([d1, d2, ..., dN ]) (11)
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Fig. 5 ROI identification

where N is the number of training samples and dk represents the decision taken for training
image k. As we focus on early detection of disease, the size of the lesion should be invariate
to the results. Ignoring the smaller ROIs would allow to leave such patches out, which can
be detrimental for the patient for a long run. The regions that are more relevant and valued
most in the classification need to be examined further. By segmenting such patches using
quadtree we cover the bases as much as we can.

4.4 ROI highlighting

For highlighting the ROI, nodes in the lowest level which were predicted as malignant, were
taken and only those of them, whose ancestors except root were all predicted as malignant,
were chosen and highlighted. This condition can also be represented as follows:

⎛

⎝
∏

j ε Ai−root

Dj

⎞

⎠ Di = 1 (12)

where Dj represents the decision of corresponding node and Ai −root represents the ances-
tors of the corresponding node excluding root. The output of this step is shown in Fig. 5a
for a mammography image.

4.5 ROI stitching

The results in the previous step may have multiple adjacent highlighted ROIs. In order to
find the arbitrary shape of affected regions we use the concept of four-connectivity [15]. If
two ROIs are four-connected then the common edge between them is removed. Formally,

isNeigbour(x
p
mROI

, x
p
nROI

) == T rue, then remove common edge (13)

This connectivity algorithm provides us the result as shown in Fig. 5b. Through ROI
highlighting technique, the proposed method is able to identify each isolated local region
responsible for underlying model’s prediction however, few common regions present in the
image remain unknown. The ROI stitching method illustrated here joins such regions to pro-
vide a better understanding of the localized region. It also captures the proliferation disease
and assess how discriminating region may grow.
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5 Experiment and results

In classification, the reason behind the prediction is must for acceptance of the model
and this makes interpretability an inseparable measure behind model’s utilization. Medical
images are not readily interpretable. In case of medical image classification, the ROIs are
not highlighted by default in the images. Thus, domain experts are required to find localized
regions which are affected by disease based on their experience and lead to the justification
of the treatment given to the patient. When SVM is employed for the similar task of med-
ical image classification, images annotated by domain experts are used to train the model.
Once the model is trained, it gives prediction for images other than training by identifying
features similar to what it has learned during training phase.

To validate the prediction of SVM for medical image classification, we had applied our
algorithm on various medical image datasets consisting of mammography images, diabetic
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retinopathy images, COVID-19 X-rays and CT-Scans and Alzheimer’s MRI images. We
applied our algorithm on a diverse medical datasets to establish its generality and capac-
ity of localizing the discriminative regions for any image classification application. In the
algorithm, SVM was backed by highlighting ROIs which motivated the SVM to classify
a whole image to be malignant. The adjacent highlighted ROIs were merged using four-
connectivity to reveal the true shape of the affected area. The algorithm’s performance was
assessed by matching the sensitive areas according to the experts without losing the spatial
correlation. The Quadtree approach has been further compared with state-of-the-art discrim-
inative localization using regression activation map (CNN-RAM) model.1 The base model
of CNN-RAM for diabetic retinopathy was used with prior trained weights and features as
available. On other benchmark medical data sets, the CNN-RAM was trained on three lev-
els (128, 256, and 512) as recommended. Further, we compared our model with You Look
Only Once (YOLO), a CNN based supervised model. YOLO needs candidate regions of
images before getting trained. This process requires human intervention, which may lead
to errors. Mammographic images dataset contains the original ROIs, hence results obtained
from YOLO have been analyzed extensively in case of mammography images only. As
an outcome, the proposed method gives prediction with readily available annotated(ROIs)
image, which supports the prediction.

5.1 Experimental setup

The experimental results were obtained using python 3.7 on a server equipped with 2 Intel
Xeon CPUs with 16 cores each accompanied by 64 GB of RAM, 2TB of disk space, and a
4GB Nvidia Quadro K2200 GPU.

5.2 Mammographic images Dataset

The first dataset we have taken is mammography images dataset from Mammographic
Image Analysis Society (Mini-MIAS)2 to classify them using quadtree-backed SVMs.
Mammography is used to screen the breast cancer but their interpretation is difficult with-
out domain expert and may lead to misclassification [29]. The classification requires an
additional supportive opinion. The dataset consisted of 322 mammography images hav-
ing 1024x1024 dimensions each. A quadtree is constructed till level 3 i.e.; nodes have
images with dimensions 128 x 128. For training, the images from all the nodes in the first
200 quadtrees are extracted and then, the corresponding 3 SVMs (512x512, 256x256, and
128x128) are trained using the corresponding images extracted from the nodes of quadtree’s
3 levels. For testing, the labels for each node’s image in quadtree are predicted using the
corresponding SVMs, and then, ROIs are highlighted. A node is only highlighted in the out-
put image iff it is predicted as cancerous and all its ancestors excluding the root node in
image’s quadtree decomposition are also predicted as cancerous.

The image in Fig. 6a shows an output of mammography image before ROI stitching. The
image in Fig. 6b shows the corresponding stitched ROI output. Figure 7 validates the effec-
tiveness of our algorithm where Fig. 7a and e highlight the actual ROIs in two cancerous
images, whereas Figs. 7b and f are the results of corresponding images from our algorithm.

1Codes were available at
https://github.com/cauchyturing/kaggle diabetic RAM
2http://peipa.essex.ac.uk/info/mias.html
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Fig. 6 A Mammography image showing output of the algorithm

To compare our approach of finding ROIs in mammograms using quadtree, we had
applied CNN-RAM and YOLO algorithms for classification. YOLO sees the whole image
at once and the CNN gives predictions of bounding boxes and class probabilities for these
boxes. Due to the low contrast of the images, histogram equalization was applied to the
dataset. Input dataset to the network consisted of annotation files containing the bounding
regions of the cancer cells given in data. Of all the 322 images 70% images were passed as
training images and the remaining were used for testing. To train the model using YOLO
we had provided the bounding regions in training images. The test image corresponding to
image in Fig. 7a is classified with multiple highlighted ROIs of varying confidence shown

Fig. 7 Comparison of Highlighed region with actual ROIs of 2 Mammographic images, a, b, c and d are
results on same image and e, f, g and h are results on another image
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Fig. 8 Classifying Mammographic images with new ROIs using Quadtree and YOLO models with existing
ROI occlusion, a, b and c are results for same image and d, e and f are results on another image

in Fig. 7d. Figure 7h could not find the ROIs in the image corresponding to image shown in
Fig. 7e and misclassified it as normal.
The results of YOLO based model were only 63.93% accurate, whereas our Quadtree
based approach has given 77.86% accuracy. The biggest concern with YOLO is providing
bounding boxes to supervise the training. Quadtree approach finds the ROIs without prior
supervision and does not need the probable ROIs for training.

To verify the correctness of our Quadtree based classification, we applied ROI occlu-
sion on all the test images. Figure 8a and d are the images tested after occluding the ROIs
predicted using Quadtree. Figure 8c and f are the results of images tested after occluding
the ROIs predicted using YOLO. All the positive test images whether true or false, both
Quadtree and YOLO methods predicted them as normal images and do not find any other
ROIs after occluding the previously found ROIs.

5.3 Diabetic Retinopathy images Dataset

In our second experiment, a dataset containing diabetic retinopathy images, has been taken
from Indian Diabetic Retinopathy Image Dataset (IDRiD) website3. This abnormality of
eyes affects the retina of patients by increasing the amount of insulin in their blood. In
this experiment, a subset containing 516 images was used, where each image is of resolu-
tion 4288x2848 pixels. Expert markups of typical diabetic retinopathy lesions and normal

3https://idrid.grand-challenge.org/
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Fig. 9 Highlighted ROI(s) in Malignant Diabetic Retinopathy Images, a and c are results on same image and
b and d are results on another image

retinal structures were also provided. The training set consisted of 344 images. After decom-
posing images to size 2144x1424, 1072x712, and 536x356, respectively, the SVMs were
trained using the corresponding images. Remaining 172 images were tested, and lesions
were highlighted in defected images. Figure 9 shows some of the results of diabetic retinopa-
thy images which were correctly classified. We had applied the YOLO based model on
this dataset as well. Since we don’t have prior information of ROIs in training images, the
results found using YOLO were very poor. Either the whole image was predicted as ROI or
misclassified.

5.4 COVID X-RAY Dataset

In the third experiment, a dataset containing 338 chest X-ray images,4 is used to classify
data into COVID-19, SARS (Severe acute respiratory syndrome), ARDS (acute respiratory
distress syndrome) and other classes[12]. Out of 422 X-ray and CT Scan images of 216
patients, we have taken only X-ray images of 194 patients, containing 272 COVID-19 pos-
itive images. Due to the varying size of images, all the images are resized to 1024x1024
pixel. We have applied the concept of one-vs-all classification using SVMs to identify the
ROIs of minimum size 128x128 pixels in COVID-19 positive images. In Fig. 10 two X-ray

4https://github.com/ieee8023/covid-chestxray-dataset
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Fig. 10 Highlighted ROI(s) in COVID X-Ray Images, a and c are results on same image and b and d are
results on another image

images of COVID-19 patients with highlighted ROIs are shown. In Fig. 10a, an ROI high-
lights the opaqueness in trachea and a lesion on right lung. In Fig. 10b, ROI captures the
hazy lung opacity on the upper lobe but does not highlight heziness in the lower lob of right
lung.

5.5 COVID CT SCAN images Dataset

In our fourth experiment, a dataset containing COVID CT Scan images,5 is analyzed. A
total of 349 images of 216 patients are COVID-positive and 397 images are non-COVID
images. All the images are of different resolutions, varying from minimum 153x124 pixels
to maximum of 1853x1485 pixels; averaging 491x383 pixels; we resized all the images to
512x512 pixels. After removing the labels in preprocessing, 60% images are considered in
training and remaining 40% for testing. After applying the SVM up to 3 levels, we identifed
the patches of size 64x64. Figure 11 shows the results of COVID CT Scan images after
applying ROI stitching. In Fig. 11a, our algorithm highlights two ROIs, of which the larger
ROI contains a small lesion. It is not evident to understand the significance of other ROI for
a human. In Fig. 11b the ROI highlights opacity in right lung only, though we can see the
opacities involved bilaterally due to thickening or partial collapse of the lung alveoli.

5https://github.com/UCSD-AI4H/COVID-CT
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Fig. 11 Highlighted ROI(s) in COVID CT Scan Images, a and c are results on same image and b and d are
results on another image

5.6 Alzheimer’s Dataset

To further evaluate the proposed method, in the final experiment, we have taken a dataset
containing 6400 Alzheimer’s Brain MRI images6 of resolution 176x208 pixels each. This
dataset contains 5121 images for training and 1279 images for testing. In Alzheimer’s, cog-
nitive impairment can be very mild, mild or moderate. So, the dataset has 4 classes of images
namely non demented, very mild demented, mild demented and moderate demented. The
model is trained using one-versus-rest strategy. The results shown in Fig. 12 with minimum
ROI size equals to 22x33 prove that the algorithm is able to locate the localized regions
responsible for model’s prediction in the test images. These ROIs show damage in the right
frontal, temporal, and parietal lobes, including the middle frontal gyrus, inferior frontal
gyrus, precentral gyrus, postcentral gyrus, superior temporal gyrus, and insula. In Fig. 12a
the ROIs in a very mild demented image, capture the opaqueness in left frontal lobe and tem-
poral lobes. In Fig. 12b the ROI captures the damage in left frontal lobe of mild demented
image. In Fig. 12c the ROIs capture the damage in parietal lobes of a moderately demented
image.

6https://www.kaggle.com/tourist55/Alzheimers-dataset-4-class-of-images
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Fig. 12 Highlighted ROI(s) in Alzheimer’s MRI Images, a and b are results for a very mild demented image,
b and e are results for a mild demented image and c and f are results for a moderate demented image

5.7 Performance and sensitivity analysis

The main objective of our method is to explain the SVM classification results. In order to
establish the completeness of the proposed Quadtree model, we have performed sensitiv-
ity analysis to compare our method with CNN-RAM and YOLO. The sensitivity of these
method can be analyzed on the basis of their performance and visual correctness as well. To
analyze the performance of the method, only accuracy cannot provide a complete overview.
Here, we have measured the precision, sensitivity, specificity and F1 score of the method
using the confusion matrix i.e. TP, FP, TN and FN. Precision provides the percentage of
correctly identified positive instances out of total positively identified instances. Sensi-
tivity or recall provides the percentage of correctly identified positives of given positive
instances, whereas specificity provides the correctly identified negatives. F1 score provides
the balance between precision and recall. To evaluate these measures, we use following
formulas

Precision = T P

(T P + FP)
(14)

Sensitivity = Recall = T P

(T P + FN)
(15)

Specif icity = T N

(T N + FP)
(16)
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Table 1 Precision, sensitivity, specificity, F1 Score and accuracy of models (in%)

Dataset Method Precision Sensitivity Specificity F1 Score Accuracy

Mini-MIAS Quadtree 80.45 87.50 59.52 83.82 77.86

CNN-RAM 50.98 74.28 71.26 60.46 72.13

YOLO 43.33 72.22 60.46 54.16 63.93

IDRiD Quadtree 87.69 93.44 68.0 90.47 86.04

CNN-RAM 92.43 90.16 82.0 91.28 87.79

COVID X-Ray Quadtree 60 78 65.54 67.83 77.61

CNN-RAM 80.95 68.0 60.0 74.38 65.71

COVID CT Scan Quadtree 85 86 75.6 85.17 85.92

CNN-RAM 72.97 77.14 75.0 74.99 76.0

Alzheimers MRI Quadtree 77.65 72.30 79.22 74.88 75.76

CNN-RAM 67.54 38.14 96.32 48.75 87.65

Accuracy = (T P + T N)

(T P + FN + T N + FP)
(17)

F1Score = 2 ∗ (P recision ∗ Recall)

(P recision + Recall)
(18)

Table 1 provides the details of all performance anaysis parameters in percentage. Though for
mammography, COVID and Alzheimer’s images our method performs better than the rest of
the methods, CNN-RAM marginally outperforms our method in case of diabetic retinopa-
thy images. For visual sensitivity, we have compared the method generated ROIs with the
readily available ROIs provided with the datasets. In our experiments, only mammography
images dataset and NIH dataset have provided the original ROIs.

The results show that the aim of interpreting SVMs’ classification results for image
datasets by segmenting them using quadtree is achieved successfully. Our method does not
require prior ROI information for training the model. Hence Quadtree approach can be
applied on all the datasets which don’t have information of regions to supervise the model.
Quadtree method is also independent of the size of images, whereas YOLO fails in case
of smaller objects in an image. We can further find more arbitrary and accurate ROIs by
segmenting the smallest patches of images using further quadtree levels.

6 Conclusion

In this paper, we proposed an algorithm of finding regions of interest in medical images
using quadtree to explain the prediction made by an SVM. The technique is based on the
assumption that some diseases manifest in local regions of a medical image and localization
of such discriminative regions can help in explaining the presence of the disease the also the
classification made by the SVM used for prediction. We first applied quad tree reclusively
on the segments of multiple levels and employed separate SVMs at each level of quadtree to
identify discriminative regions at a very fine level. The regions of interest in mammography
images highlighted the regions containing the actual lesions. Though many of the images in
the dataset had only one lesion spot, our method could highlight additional regions in few
images. The presence of regions which are not immediately discriminative might have also
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been responsible for the disease. For diabetic retinopathy images, our method highlighted
multiple regions of interest in an image containing perforated abnormalities in isolation.
These regions of interest could be related to severity of disease. Our method highlighted
the opaqueness on both the sides of the trachea in COVID-19 X-ray images. By applying
the SVM hierarchically, we could highlight the small lesions contributing in prediction. The
high accuracy of the classifier with ability to explain the classification can be used for bet-
ter understanding of the disease. For COVID-19 CT scan images, though the model predicts
with 85.92% of accuracy, the highlighted regions of interest on COVID-19 CT scan dataset
were not visually enhancing the model’s explainability, making it difficult to understand the
factors responsible for prediction. The regions of interest of mild and moderately demented
Alzheimer MRI images captured the significantly discriminative regions with high model
accuracy as well. The SVM model could identify the regions of interest in mild and mod-
erate demented images providing correct visual explanation. Sensitivity analysis of SVM
classifier in the model supported the visual explainability with high accuracy on all the
datasets. However, localization of regions of interest using quadtree needs to be combined
with other techniques to explain the prediction of a classifier in entirety.
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