Skip to main content
Log in

Iterative approach for parametric PSF estimation

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In this paper a parametric point spread function (PSF) estimation method is presented. This method can be employed for estimating the parameters of linear motion blur vector. The proposed method works on single image and estimates angle and length of motion blur vector to generate required PSF for deblurring. This method is based on step-by-step estimation of motion blur vector. In the first approximation the blind method considers short length vectors in all directions and deblurs image with PSF of these candidate vectors. The quality of deblurred image is assessed by a no-reference quality measurement metric which is proposed in this paper. The proposed no-reference image quality metric evaluates degradation in sharpness of edges and the amount of resulted artifact caused by saturated pixels, in the deblurred image. Those motion vectors that caused unacceptable deblurring results are omitted in the next iteration. The approximation is improved by increasing the length of the remaining vectors and the same process continues iteratively. The process goes on until only one vector remains as the estimation for motion blur vector. Experimental results show that in estimation of motion blur vectors, the length estimation error is less than one pixel in 85% of the cases and angle estimation error in 95% of the cases is less than one degree. Comparing with a conventional method indicates that the proposed method shows more than four times improvement in length estimation and 10% improvement in angle estimation. Moreover, the proposed method has comparatively lower computational load than other conventional deblurring methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Adam T, Paramesran R (2020) Hybrid non-convex second-order total variation with applications to non-blind image deblurring. SIViP 14(1):115–123. https://doi.org/10.1007/s11760-019-01531-3

    Article  Google Scholar 

  2. Babacan SD, Molina R, Do MN, Katsaggelos AK (2012). Bayesian blind deconvolution with general sparse image priors. In: European Conference on Computer Vision. Springer, pp 341–355. doi:https://doi.org/10.1007/978-3-642-33783-3_25

  3. Bai Y, Cheung G, Liu X, Gao W (2019) Graph-based blind image Deblurring from a single photograph. IEEE Trans Image Process 28:1404–1418. https://doi.org/10.1109/TIP.2018.2874290

    Article  MathSciNet  Google Scholar 

  4. Brusius F, Schwanecke U, Barth P (2011). Blind image deconvolution of linear motion blur. In: International Conference on Computer Vision, Imaging and Computer Graphics. Springer, pp 105–119. doi:https://doi.org/10.1007/978-3-642-32350-8_7

  5. Dobeš M, Machala L, Fürst T (2010) Blurred image restoration: a fast method of finding the motion length and angle. Digital Signal Processing 20(6):1677–1686. https://doi.org/10.1016/j.dsp.2010.03.012

    Article  Google Scholar 

  6. Elmi Y, Zargari F, Rahmani AM (2018) Blind image Deblurring based on multi-resolution ringing removal. Signal Process 154:250–259. https://doi.org/10.1016/j.sigpro.2018.09.015

    Article  Google Scholar 

  7. Gonzalez RC, Woods RE (2017). Digital image processing. Pearson,

  8. Gregson J, Heide F, Hullin MB, Rouf M, Heidrich W (2013) Stochastic deconvolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. IEEE, pp 1043–1050. doi: https://doi.org/10.1109/CVPR.2013.139

  9. Javaran TA, Hassanpour H, Abolghasemi V (2019) Blind motion image deblurring using an effective blur kernel prior. Multimed Tools Appl 78(16):22555–22574. https://doi.org/10.1007/s11042-019-7402-1

    Article  Google Scholar 

  10. Khan M, Nizami IF, Majid M (2019) No-reference image quality assessment using gradient magnitude and wiener filtered wavelet features. Multimed Tools Appl 78(11):14485–14509. https://doi.org/10.1007/s11042-018-6797-4

    Article  Google Scholar 

  11. Krishnan D, Tay T, Fergus R (2011). Blind deconvolution using a normalized sparsity measure. In: IEEE Conference on Computer Vision and Pattern Recognition . IEEE, pp 233–240. doi:https://doi.org/10.1109/CVPR.2011.5995521

  12. Li Y, Tofighi M, Geng J, Monga V, Eldar YC (2020) Efficient and interpretable deep blind image Deblurring via algorithm unrolling. IEEE Transactions on Computational Imaging 6:666–681. https://doi.org/10.1109/TCI.2020.2964202

    Article  Google Scholar 

  13. Liu Y, Wang J, Cho S, Finkelstein A, Rusinkiewicz S (2013) A no-reference metric for evaluating the quality of motion deblurring. ACM Trans Graph 32(6):1–12. https://doi.org/10.1145/2508363.2508391

    Article  Google Scholar 

  14. Ma C, Zhang J, Xu S, Meng W, Xi R, Kumar GH, Zhang X (2018) Accurate blind deblurring using salientpatch-based prior for large-size images. Multimed Tools Appl 77(21):28077–28100. https://doi.org/10.1007/s11042-018-6009-2

    Article  Google Scholar 

  15. Marziliano P, Dufaux F, Winkler S, Ebrahimi T A (2002) No-reference perceptual blur metric. In: Proceedings of International Conference on Image Processing. IEEE, pp 57–60 vol. 3. doi:https://doi.org/10.1109/ICIP.2002.1038902

  16. Mesarovic VZ, Galatsanos NP, Katsaggelos AK (1995) Regularized constrained total least squares image restoration. IEEE Trans Image Process 4(8):1096–1108. https://doi.org/10.1109/83.403444

    Article  Google Scholar 

  17. Mosleh A, Elmi Y, Zargari F, Onzon E, Langlois JP (2018) Explicit ringing removal in image Deblurring. IEEE Trans Image Process 27(2):580–593. https://doi.org/10.1109/TIP.2017.2764625

    Article  MathSciNet  MATH  Google Scholar 

  18. Mosleh A, Green P, Onzon E, Begin I, Pierre Langlois J (2015). Camera intrinsic blur kernel estimation: A reliable framework. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. IEEE, pp 4961–4968. doi: https://doi.org/10.1109/CVPR.2015.7299130

  19. Mosleh A, Langlois JP, Green P (2014). Image deconvolution ringing artifact detection and removal via PSF frequency analysis. In: European Conference on Computer Vision. Springer, pp 247–262. doi:https://doi.org/10.1007/978-3-319-10593-2_17

  20. Nah S, Kim TH, Lee KM (2017). Deep multi-scale convolutional neural network for dynamic scene deblurring. In: IEEE Conference on Computer Vision and Pattern Recognition. IEEE, pp 3883–3891. doi: https://doi.org/10.1109/CVPR.2017.35

  21. Nayar S, Ben-Ezra M (2004) Motion-based motion deblurring. IEEE Trans Pattern Anal Mach Intell 26(6):689–698. https://doi.org/10.1109/TPAMI.2004.1

    Article  Google Scholar 

  22. Oliveira JP, Figueiredo MA, Bioucas-Dias JM (2014) Parametric blur estimation for blind restoration of natural images: linear motion and out-of-focus. IEEE Trans Image Process 23(1):466–477. https://doi.org/10.1109/TIP.2013.2286328

    Article  MathSciNet  MATH  Google Scholar 

  23. Pan J, Hu Z, Su Z, Yang M-H (2014). Deblurring text images via L0-regularized intensity and gradient prior. In: IEEE Conference on Computer Vision and Pattern Recognition. IEEE, pp 2901–2908. doi: https://doi.org/10.1109/CVPR.2014.371

  24. Rezaie F, Helfroush MS, Danyali H (2018) No-reference image quality assessment using local binary pattern in the wavelet domain. Multimed Tools Appl 77(2):2529–2541. https://doi.org/10.1007/s11042-017-4432-4

    Article  Google Scholar 

  25. Richardson WH (1972) Bayesian-based iterative method of image restoration. J Opt Soc Am 62(1):55–59. https://doi.org/10.1364/JOSA.62.000055

    Article  MathSciNet  Google Scholar 

  26. Sindelar O, Sroubek F, Milanfar P (2014). Space-variant image deblurring on smartphones using inertial sensors. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. IEEE, pp 191–192. doi: https://doi.org/10.1109/CVPRW.2014.34

  27. Soe AK, Zhang X A (2012). simple PSF parameters estimation method for the de-blurring of linear motion blurred images using wiener filter in OpenCV. In: International Conference on Systems and Informatics (ICSAI). IEEE, pp 1855–1860. doi:https://doi.org/10.1109/ICSAI.2012.6223408

  28. Su S, Delbracio M, Wang J, Sapiro G, Heidrich W, Wang O (2017). Deep video deblurring for hand-held cameras. In: IEEE Conference on Computer Vision and Pattern Recognition. IEEE, pp 1279–1288 doi: https://doi.org/10.1109/CVPR.2017.33

  29. Xu L, Jia J (2010). Two-phase kernel estimation for robust motion deblurring. In: European Conference on Computer Vision. Springer, pp 157–170. doi:https://doi.org/10.1007/978-3-642-15549-9_12

  30. Xue F, Blu T (2015) A novel SURE-based criterion for parametric PSF estimation. IEEE Trans Image Process 24(2):595–607. https://doi.org/10.1109/TIP.2014.2380174

    Article  MathSciNet  MATH  Google Scholar 

  31. Yu J, Chang Z, Xiao C (2019) Blur kernel estimation using sparse representation and cross-scale self-similarity. Multimed Tools Appl 78(13):18549–18570. https://doi.org/10.1007/s11042-019-7237-9

    Article  Google Scholar 

  32. Zhang F, Lu W, Liu H, Xue F (2018) Natural image deblurring based on l0-regularization and kernel shape optimization. Multimed Tools Appl 77(20):26239–26257. https://doi.org/10.1007/s11042-018-5847-2

    Article  Google Scholar 

  33. Zhu X, Šroubek F, Milanfar P (2012). Deconvolving psfs for a better motion deblurring using multiple images. In: European Conference on Computer Vision. Springer, pp 636–647. doi:https://doi.org/10.1007/978-3-642-33715-4_46

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farzad Zargari.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elmi, Y., Zargari, F. & Rahmani, A.M. Iterative approach for parametric PSF estimation. Multimed Tools Appl 79, 29433–29450 (2020). https://doi.org/10.1007/s11042-020-09511-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-020-09511-3

Keywords

Navigation