Skip to main content
Log in

A fast 3D object recognition algorithm using plane-constrained point pair features

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

The point pair feature (PPF) algorithm is one of the best-performing 3D object recognition algorithms. However, the high dimensionality of its search space is a disadvantage of this algorithm. This high dimensionality means the feature matching process contains a large number of uninformative features, which reduces recognition speed. To solve this problem and improve the object recognition speed, this paper proposes a fast 3D object recognition algorithm based on the plane-constrained point pair features. By utilizing the property of the coplanar point pair features and the characteristics of the object placement plane, the proposed algorithm extracts the object placement plane through convex hull area calculation, eliminates irrelevant point pair features, and then performs object recognition with the reduced point pair feature descriptors for the feature matching. Experimental results demonstrate that the proposed algorithm significantly reduces the number of feature descriptors and accelerates the recognition speed of 3D objects in a complex background. Compared to the original point pair feature algorithm, the proposed method can achieve better performance and efficiency for 3D object recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Abualigah LMQ (2019) Feature selection and enhanced krill herd algorithm for text document clustering. Springer. https://doi.org/10.1007/978-3-030-10674-4

  2. Abualigah LM, Khader AT, Hanandeh ES (2018) A new feature selection method to improve the document clustering using particle swarm optimization algorithm. Journal of Computational Science 25:456–466. https://doi.org/10.1016/j.jocs.2017.07.018

    Article  Google Scholar 

  3. Awad AI, Hassaballah M (2016) Image feature detectors and descriptors. Studies in computational intelligence. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-319-28854-3

    Book  Google Scholar 

  4. Barber CB, Dobkin DP, Dobkin DP, Huhdanpaa H (1996) The quickhull algorithm for convex hulls. ACM Transactions on Mathematical Software (TOMS) 22(4):469–483. https://doi.org/10.1145/235815.235821

    Article  MathSciNet  MATH  Google Scholar 

  5. Birdal T, Ilic S (2015) Point pair features based object detection and pose estimation revisited. In: 3D vision (3DV), 2015 international conference on. IEEE, pp 527–535. https://doi.org/10.1109/3dv.2015.65

  6. Carvalho L, von Wangenheim A (2019) 3D object recognition and classification: a systematic literature review. Pattern Anal Applic 22(4):1243–1292. https://doi.org/10.1007/s10044-019-00804-4

    Article  MathSciNet  Google Scholar 

  7. Choi C, Christensen HI (2016) RGB-D object pose estimation in unstructured environments. Robot Auton Syst 75:595–613. https://doi.org/10.1016/j.robot.2015.09.020

    Article  Google Scholar 

  8. de Figueiredo RP, Moreno P, Bernardino A (2015) Efficient pose estimation of rotationally symmetric objects. Neurocomputing 150:126–135. https://doi.org/10.1016/j.neucom.2014.07.070

    Article  Google Scholar 

  9. Deng H, Birdal T, Ilic S (2018) Ppfnet: global context aware local features for robust 3d point matching. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 195–205. https://doi.org/10.1109/CVPR.2018.00028

  10. Drost B, Ilic S (2015) Local hough transform for 3d primitive detection. In: 3D Vision (3DV), 2015 international conference on. IEEE, pp 398–406. https://doi.org/10.1109/3DV.2015.52

  11. Drost B, Ulrich M, Navab N, Ilic S (2010) Model globally, match locally: efficient and robust 3D object recognition. In: Computer Vision and Pattern Recognition (CVPR), 2010 IEEE conference on. IEEE, pp 998–1005. https://doi.org/10.1109/cvpr.2010.5540108

  12. Ghorpade VK, Checchin P, Malaterre L, Trassoudaine L (2017) 3D shape representation with spatial probabilistic distribution of intrinsic shape keypoints. Eurasip Journal on Advances in Signal Processing:22. https://doi.org/10.1186/s13634-017-0483-y

  13. Gomes AJP (2016) A Total order heuristic-based convex Hull algorithm for points in the plane. Comput Aided Des 70:153–160. https://doi.org/10.1016/j.cad.2015.07.013

    Article  MathSciNet  Google Scholar 

  14. Graham RL (1972) An efficient algorithm for determining the convex hull of a finite planar set. Inf Process Lett 1:132–133. https://doi.org/10.1016/0020-0190(72)90045-2

    Article  MATH  Google Scholar 

  15. Guo YL, Bennamoun M, Sohel F, Lu M, Wan JW (2014) 3D object recognition in cluttered scenes with local surface features: a survey. IEEE Trans Pattern Anal Mach Intell 36(11):2270–2287. https://doi.org/10.1109/tpami.2014.2316828

    Article  Google Scholar 

  16. Guo YL, Bennamoun M, Sohel F, Lu M, Wan JW, Kwok NM (2016) A comprehensive performance evaluation of 3D local feature descriptors. Int J Comput Vis 116(1):66–89. https://doi.org/10.1007/s11263-015-0824-y

    Article  MathSciNet  Google Scholar 

  17. Hassaballah M, Awad AI (2016) Detection and description of image features: an introduction. In: Image feature detectors and descriptors. Springer, pp 1–8. https://doi.org/10.1007/978-3-319-28854-3_1

  18. Hassaballah M, Awad AI (2020) Deep learning in computer vision: principles and applications. CRC Press. https://doi.org/10.1201/9781351003827

  19. Hassaballah M, Hosny KM (2018) Recent advances in computer vision: theories and applications, vol 804. Springer. https://doi.org/10.1007/978-3-030-03000-1

  20. Hinterstoisser S, Lepetit V, Rajkumar N, Konolige K (2016) Going further with point pair features. In: European conference on computer vision. Springer, pp 834–848. https://doi.org/10.1007/978-3-319-46487-9_51

  21. Ioannidou A, Chatzilari E, Nikolopoulos S, Kompatsiaris I (2017) Deep learning advances in computer vision with 3D data: a survey. ACM Computing Surveys (CSUR) 50(2):20–38. https://doi.org/10.1145/3042064

    Article  Google Scholar 

  22. Jarvis RA (1973) On the identification of the convex hull of a finite set of points in the plane. Inf Process Lett 2:18–21. https://doi.org/10.1016/0020-0190(73)90020-3

    Article  MATH  Google Scholar 

  23. Jørgensen TB, Buch AG, Kraft D (2015) Geometric edge description and classification in point cloud data with application to 3D object recognition. In: International conference on computer vision theory and applications. SCITEPRESS, pp 333–340. https://doi.org/10.5220/0005196703330340

  24. Kiforenko L, Drost B, Tombari F, Krüger N, Buch AG (2018) A performance evaluation of point pair features. Comput Vis Image Underst 166:66–80. https://doi.org/10.1016/j.cviu.2017.09.004

    Article  Google Scholar 

  25. Lan S, Yu R, Yu G, Davis LS (2019) Modeling local geometric structure of 3D point clouds using geo-CNN. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 998–1008. https://doi.org/10.1109/CVPR.2019.00109

  26. Lin BW, Wang FS, Sun Y, Qu W, Chen Z, Zhang S (2017) Boundary points based scale invariant 3D point feature. J Vis Commun Image Represent 48:136–148. https://doi.org/10.1016/j.jvcir.2017.05.007

    Article  Google Scholar 

  27. Liu RZ, Tang YY, Chan PPK (2018) A fast convex hull algorithm inspired by human visual perception. Multimed Tools Appl 77(23):31221–31237. https://doi.org/10.1007/s11042-018-6185-0

    Article  Google Scholar 

  28. Liu P, Yu H, Cang S (2019) Adaptive neural network tracking control for underactuated systems with matched and mismatched disturbances. Nonlinear Dynamics 98(2):1447–1464. https://doi.org/10.1007/s11071-019-05170-8

    Article  Google Scholar 

  29. Lopez GL, Negron APP, Jimenez AD, Rodriguez JR, Paredes RI (2017) Comparative analysis of shape descriptors for 3D objects. Multimed Tools Appl 76(5):6993–7040. https://doi.org/10.1007/s11042-016-3330-5

    Article  Google Scholar 

  30. Osada R, Funkhouser T, Chazelle B, Dobkin D (2002) Shape distributions. ACM Trans Graph 21(4):807–832. https://doi.org/10.1145/571647.571648

    Article  MathSciNet  MATH  Google Scholar 

  31. Rusu RB, Cousins S (2011) 3d is here: Point cloud library (pcl). In: Robotics and automation (ICRA), 2011 IEEE International Conference on. IEEE, pp 1–4. https://doi.org/10.1109/ICRA.2011.5980567

  32. Rusu RB, Blodow N, Beetz M (2009) Fast point feature histograms (FPFH) for 3D registration. In: Robotics and automation, 2009. ICRA'09. IEEE international conference on. IEEE, pp 3212–3217. https://doi.org/10.1109/ROBOT.2009.5152473

  33. Rusu RB, Bradski G, Thibaux R, Hsu J (2010) Fast 3d recognition and pose using the viewpoint feature histogram. In: Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on. IEEE, pp 2155–2162. https://doi.org/10.1109/IROS.2010.5651280

  34. Salti S, Tombari F, Di Stefano L (2014) SHOT: unique signatures of histograms for surface and texture description. Comput Vis Image Underst 125:251–264. https://doi.org/10.1016/j.cviu.2014.04.011

    Article  Google Scholar 

  35. Shi YF, Long PX, Xu K, Huang H, Xiong YS (2016) Data-driven contextual modeling for 3D scene understanding. Computers & Graphics-UK 55:55–67. https://doi.org/10.1016/j.cag.2015.11.003

    Article  Google Scholar 

  36. Sklansky J (1982) Finding the convex hull of a simple polygon. Pattern Recogn Lett 1(2):79–83. https://doi.org/10.1016/0167-8655(82)90016-2

    Article  MATH  Google Scholar 

  37. Sun L, Zhao C, Yan Z, Liu P, Duckett T, Stolkin R (2018) A novel weakly-supervised approach for RGB-D-based nuclear waste object detection. IEEE Sensors J 19(9):3487–3500. https://doi.org/10.1109/JSEN.2018.2888815

    Article  Google Scholar 

  38. Tang Z, Yu H, Lu C, Liu P, Jin X (2019) Single-trial classification of different movements on one arm based on ERD/ERS and Corticomuscular coherence. IEEE Access 7:128185–128197. https://doi.org/10.1109/ACCESS.2019.2940034

    Article  Google Scholar 

  39. ten Pas A, Gualtieri M, Saenko K, Platt R (2017) Grasp pose detection in point clouds. Int J Robot Res 36(13–14):1455–1473. https://doi.org/10.1177/0278364917735594

    Article  Google Scholar 

  40. Tombari F, Salti S, Di Stefano L (2010) Unique signatures of histograms for local surface description. In: European conference on computer vision. Springer, pp 356–369. https://doi.org/10.1007/978-3-642-15558-1_26

  41. Tombari F, Salti S, Di Stefano L (2010) Unique shape context for 3D data description. In: Proceedings of the ACM workshop on 3D object retrieval. ACM, pp 57–62. https://doi.org/10.1145/1877808.1877821

  42. Vidal J, Lin C-Y, Lladó X, Martí R (2018) A method for 6D pose estimation of free-form rigid objects using point pair features on range data. Sensors 18(8):2678. https://doi.org/10.3390/s18082678

    Article  Google Scholar 

  43. Zhao H, Tang M, Ding H (2020) HoPPF: a novel local surface descriptor for 3D object recognition. Pattern Recogn 103:107272. https://doi.org/10.1016/j.patcog.2020.107272

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China under Grant U1601202, and in part by the Guangdong Provincial R&D Project under Grant No. 2018B090906002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Gao.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, Z., Gao, J., Wu, D. et al. A fast 3D object recognition algorithm using plane-constrained point pair features. Multimed Tools Appl 79, 29305–29325 (2020). https://doi.org/10.1007/s11042-020-09525-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-020-09525-x

Keywords

Navigation