Skip to main content

Advertisement

Log in

Low-light image enhancement algorithm based on an atmospheric physical model

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Under low illumination, the colour constancy of human vision can be used for correctly determining the colour of objects according to the fixed reflection coefficient of external light and objects. However, video image acquisition equipment does not implement the colour constancy characteristic of the human visual system. Under low illumination, only a small amount of light is reflected from the surface of the imaged object; as a result, the captured image is underexposed. After statistical analysis of low-light images, these inverted underexposed images appear foggy. Inversion is a uniform and reversible operation that is performed on the entire image. Hereby, a method is proposed for resolving low-light images using conventional physical models. First, a low-light image is inverted for obtaining a foggy image. Subsequently, a pyramid-type dense residual block network and a dark channel prior K-means classification method are applied to the foggy image, to calculate the transmission and atmospheric light. Finally, the parameters obtained from this solution are incorporated into the low-light imaging model to obtain a clear image. We subjectively and qualitatively analysed the experimental results, and used information entropy and average gradient for objective quantitative analysis. We demonstrate that the algorithm improves the overall brightness and contrast of the imaged scenes, and the obtained enhanced images are clear and natural.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Anish M, Rajiv S, Alan C et al (2013) Making a ‘Completely Blind’ image quality analyzer. IEEE Signal Processing Letters 20(3):209–212

    Article  Google Scholar 

  2. Arqub OA, Al-Smadi M (2020) Fuzzy conformable fractional differential equations: novel extended approach and new numerical solutions. Soft Computing, https://doi.org/10.1007/s00500-020-04687-0

  3. Arqub OA, Al-Smadi M, Momani S et al (2016) Application of reproducing kernel algorithm for solving second-order, two-point fuzzy boundary value problems. Soft Computing 21(23):7191–7206

    Article  MATH  Google Scholar 

  4. Arqub OA (2015) Adaptation of reproducing kernel algorithm for solving fuzzy Fredholm–Volterra integrodifferential equations. Neural Comput and Applic 28(7):1591–1610

    Article  Google Scholar 

  5. Arqub OA, AL-Smadi M, Momani S et al (2015) Numerical solutions of fuzzy differential equations using reproducing kernel Hilbert space method. Soft Comput 20(8):3283–3302

    Article  MATH  Google Scholar 

  6. Berman D, Tali T, Avidan S (2016) Non-local image dehazing. In: IEEE Conference on computer vision and pattern recognition, pp 1674–1682

  7. Cai B, Xu X, Jia K et al (2016) Dehazenet: An end-to-end system for single image haze removal. IEEE TIP 25(11):5187–5198

    MathSciNet  MATH  Google Scholar 

  8. Cai J, Gu S, Zhang L (2018) Learning a deep single image contrast enhancer from multi-exposure images. IEEE Trans Image Process 27(4):2049–2062

    Article  MathSciNet  MATH  Google Scholar 

  9. Celik T, Tjahjadi T (2011) Contextual and variational contrast enhancement. IEEE Trans Image Process 20(12):3431–3441

    Article  MathSciNet  MATH  Google Scholar 

  10. Chandrasekharan R, Sasikumar M (2018) Fuzzy Transform for contrast enhancement of non-uniform illumination images. IEEE Signal Process Lett 25(6):813–817

    Article  Google Scholar 

  11. Chen C, Chen Q, Xu J et al (2018) Learning to see in the dark. In: IEEE Conference on computer vision and pattern recognition, pp 3291–3300

  12. Conde MH, Zhang B, Kagawa K, Loffeld O (2016) Low-light image enhancement for multiaperture and multitap systems. IEEE Photonics Journal 8(2):1–25

    Article  Google Scholar 

  13. Dabov K, Foi A, Katkovnik V, Egiazarian K (2007) Image denoising by sparse 3-d transform-domain collaborative filtering. IEEE Trans Image Process 6(8):2080–2095

    Article  MathSciNet  Google Scholar 

  14. Dong X, Wang G, Pang Y et al (2011) Fast efficient algorithm for enhancement of low lighting video. IEEE International Conference on Multimedia and Expo, pp 1–6

  15. Fu X, Zeng D, Huang Y et al (2016) A weighted variational model for simultaneous reflectance and illumination estimation. In IEEE Conference on computer vision and pattern recognition, pp 2782–2790

  16. Guo X, Li Y, Ling H (2017) LIME: Low-light image enhancement via illumination map estimation. IEEE Trans Image Process 26(2):982–993

    Article  MathSciNet  MATH  Google Scholar 

  17. He K, Sun J, Tang X (2011) Single image haze removal using dark channel prior. IEEE Trans Pattern Anal Mach Intell 33(12):2341–2353

    Article  Google Scholar 

  18. Huynh-The T, Le BV, Lee S et al (2014) Using weighted dynamic range for histogram equalization to improve the image contrast. EURASIP J Image Vid Process 2014(1):44

    Article  Google Scholar 

  19. Huang S, Cheng F, Chiu Y (2013) Efficient contrast enhancement using adaptive gamma correction with weighting distribution. IEEE Trans Image Process 22(3):1032–1041

    Article  MathSciNet  MATH  Google Scholar 

  20. Jobson DJ, Rahman Z, Woodell GA (1997) Properties and performance of a center/surround retinex. IEEE Trans Image Processing 6(3):451–62

    Article  Google Scholar 

  21. Kim T, Paik J, Kang B (1998) Contrast enhancement system using spatially adaptive histogram equalization with temporal fifiltering. IEEE Trans Consum Electron 44(1):82–87

    Article  Google Scholar 

  22. Land EH, McCann JJ (1971) Lightness and retinex theory. J Opt Soc Am 61(1):1–11

    Article  Google Scholar 

  23. Land EH (1977) The retinex theory of color vision. Scientifific American 237(6):108–128

    Article  Google Scholar 

  24. Lee C, Lee C, Kim C-S (2012) Contrast enhancement based on layered difference representation. In: Image Processing, pp 965–968

  25. Li L, Wang R, Wang W et al (2015) A low-light image enhancement method for both denoising and contrast enlarging. In: IEEE International conference on image processing, pp 3730–3734

  26. Li J, Klein R, Yao A (2017) A two-streamed network for estimating fine-scaled depth maps from single rgb images. In: The IEEE international conference on computer vision, pp 695–704

  27. Li B, Peng X, Wang Z, Xu J, Feng D (2017) Aod-net: All-in-one dehazing network. In: IEEE International conference on computer vision, pp 4770–4778

  28. Li L, Si Y, Jia Z (2018) Medical image enhancement based on CLAHE and unsharp masking in NSCT domain. J Med Imaging Health Informatics 8 (3):431–438

    Article  Google Scholar 

  29. Li M, Liu J, Yang W et al (2018) Structure-revealing low-light image enhancement via robust retinex model. IEEE Trans Image Process 27 (6):2828–2841

    Article  MathSciNet  MATH  Google Scholar 

  30. Li JJ, Li GH, Fan H (2018) Image Dehazing using Residual-based Deep CNN. IEEE Access, 1–1

  31. Loh YP, Chan CS (2018) Getting to know low-light images with the exclusively dark dataset. Comput Vis Image Understanding 178:30–42

    Article  Google Scholar 

  32. Lore KG, Akintayo A, Sarkar S (2017) Llnet: A deep autoencoder approach to natural low-light image enhancement. Pattern Recogn 61:650–662

    Article  Google Scholar 

  33. Lu H, Li Y, Uemur T et al (2018) Low illumination underwater light field images reconstruction using deep convolutional neural networks. Future Generation Computer Systems 82:142–148

    Article  Google Scholar 

  34. Ma J, Fan X, Ni J et al (2017) Multi-scale retinex with color restoration image enhancement based on Gaussian filtering and guided filtering. Int J Modern Phys B 31(16):1744077

    Article  MATH  Google Scholar 

  35. Ma K, Zeng K, Wang Z (2013) Perceptual quality assessment for multi-exposure image fusion. IEEE Trans Image Process 24(11):3345–3356

    Article  MathSciNet  MATH  Google Scholar 

  36. Meng G, Wang Y, Duan J et al (2013) Efficient image dehazing with boundary constraint and contextual regularization. Proceedings of international conference on computer vision, pp 617–624

  37. Mittal A, Moorthy AK et al (2012) No-reference image quality assessment in the spatial domain. IEEE Trans Image Process 21(12):4695–4708

    Article  MathSciNet  MATH  Google Scholar 

  38. Narasimhan SG, Nayar SK (2000) Chromatic framework for vision in bad weather. In: IEEE Conference on computer vision and pattern recognition, vol 1, pp 598–605

  39. NASA (2001) Retinex image processing. http://dragon.larc.nasa.gov/retinex/pao/news/

  40. Narasimhan SG, Nayar SK (2003) Contrast restoration of weather degraded images. IEEE Trans Pattern Anal Mach Intell 25(6):713–724

    Article  Google Scholar 

  41. Omer I, Werman M (2004) Color lines: Image specific color representation. In: IEEE Conference on Computer Vision and Pattern Recognition, vol 2, pp 11–13

  42. Ren W, Liu S, Zhang H et al (2016) Single image dehazing via multi-scale convolutional neural networks. In: European conference on computer vision, vpp. 154–169

  43. Shen L, Yue Z, Feng F et al (2017) Msr-net:low-light image enhancement using deep convolutional network, arXiv:1711.02488

  44. Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556

  45. Vonikakis V, Kouskouridas R, Gasteratos A (2018) On the evaluation of illumination compensation algorithms. Multimed Tools Appl 77(8):9211–9231

    Article  Google Scholar 

  46. Wang T, Ji Z, Sun Q et al (2016) Label propagation and higher-order constraint-based segmentation of fluid-associated regions in retinal SD-OCT images. Info Sci 358:92–111

    Article  Google Scholar 

  47. Wang Y, Chen Q, Zhang B (1999) Image enhancement based on equal area dualistic sub-image histogram equalization method. IEEE Trans Consum Electron 45(1):68–75

    Article  Google Scholar 

  48. Wang S, Zheng J, Hu HM et al (2013) Naturalness preserved enhancement algorithm for non-uniform illumination images. IEEE Trans Image Process 22(9):3538–3548

    Article  Google Scholar 

  49. Wei C, Wang W, Yang W et al (2018) Deep retinex decomposition for low-light enhancement. British Machine Vision Conference, arXiv:1808.04560

  50. Xu Z, Yang X, Li X et al (2018) Strong baseline for single image dehazing with deep features and instance normalization. British Machine Vision Conference, pp 243

  51. Ying Z, Li G, Ren Y et al (2017) A new image contrast enhancement algorithm using exposure fusion framework. International Conference on Computer Analysis of Images and Patterns, pp 36–46

  52. Zhang H, Patel VM (2018) Densely connected pyramid dehazing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3194–3203

  53. Zhao H, Shi J, Qi X et al (2016) Pyramid scene parsing network. arXiv:1612.01105

  54. Zhang Y, Tian Y, Kong Y et al (2018) Residual dense network for image super-resolution. In: The IEEE Conference on computer vision and pattern recognition, pp 2472–2481

  55. Zhang H, Dana K, Shi J et al (2018) Context encoding for semantic segmentation. In: The IEEE Conference on computer vision and pattern recognition, pp 7151–7160

  56. Zhang H, Patel VM (2018) Density-aware single image deraining using a multi-stream dense network. In: The IEEE Conference on computer vision and pattern recognition, pp 695–704

  57. Zhang W, Hou X (2018) Light source point cluster selection-based atmospheric light estimation. Multimed Tools Appl 77(3):2947–2958

    Article  Google Scholar 

Download references

Acknowledgment

The authors acknowledge the National Natural Science Foundation of China (Grant nos. 61772319, 61976125, 61873177 and 61773244), and Shandong Natural Science Foundation of China (Grant no. ZR2017MF049).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinjiang Li.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, X., Li, J. & Hua, Z. Low-light image enhancement algorithm based on an atmospheric physical model. Multimed Tools Appl 79, 32973–32997 (2020). https://doi.org/10.1007/s11042-020-09562-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-020-09562-6

Keywords

Navigation