Skip to main content
Log in

Color object segmentation and tracking using flexible statistical model and level-set

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

This study presents an unsupervised novel algorithm for color image segmentation, object detection and tracking based on unsupervised learning step followed with a post processing step implemented with a variational active contour. Flexible learning method of a finite mixture of bounded generalized Gaussian distributions using the Minimum Message Length (MML) principle is developed to cope with the complexity of color images modeling. We deal here simultaneously with the issues of data-model fitting, determining automatically the optimal number of classes and selecting relevant features. Indeed, a feature selection step based on MML is implemented to eliminate uninformative features and therefore improving the algorithm’s performance. For model’s parameters estimation, the maximum likelihood (ML) was investigated and conducted via expectation maximization (EM) algorithm. The obtained object boundaries in the first step are tracked on each frame of a given sequence using a geometric level-set approach. The implementation has the advantage to help in improving the computational efficiency in high-dimensional spaces. We demonstrate the effectiveness of the developed segmentation method through several experiments. Obtained results reveal that our approach is able to achieve higher precision as compared to several other methods for color image segmentation and object tracking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Alhakami W, ALharbi A, Bourouis S, Alroobaea R, Bouguila N (2019) Network anomaly intrusion detection using a nonparametric bayesian approach and feature selection. IEEE Access 7:52181–52190

    Article  Google Scholar 

  2. Allili MS, Ziou D, Bouguila N, Boutemedjet S (2010) Unsupervised feature selection and learning for image segmentation. In: 2010 Canadian conference on computer and robot vision (CRV). IEEE, pp 285–292

  3. Alroobaea R, Alsufyani A, Ansari MA, Rubaiee S, Algarni S (2018) Supervised machine learning of kfcg algorithm and mbtc features for efficient classification of image database and cbir systems. Int J Appl Eng Res 13(9):6795–6804

    Google Scholar 

  4. Alroobaea R, Rubaiee S, Bourouis S, Bouguila N, Alsufyani A (2020) Bayesian inference framework for bounded generalized gaussian-based mixture model and its application to biomedical images classification. Int J Imaging Syst Technol 30(1):18–30

    Article  Google Scholar 

  5. Arbelaez P (2006) Boundary extraction in natural images using ultrametric contour maps. In: IEEE conference on computer vision and pattern recognition, CVPR, p 182

  6. Arbelaez P, Maire M, Fowlkes C, Malik J (2011) Contour detection and hierarchical image segmentation. IEEE Trans Pattern Anal Mach Intell 33(5):898–916

    Article  Google Scholar 

  7. Ayed IB, Mitiche A, Belhadj Z (2005) Multiregion level-set partitioning of synthetic aperture radar images. IEEE Trans Pattern Anal Mach Intell 27 (5):793–800

    Article  Google Scholar 

  8. Babu G, Aneesh R, Nayar GR (2017) A novel method based on chan vese segmentation for salient structure detection. In: 2017 IEEE international conference on circuits and systems (ICCS). IEEE, pp 414–418

  9. Bouguila N, Ziou D (2005) On fitting finite dirichlet mixture using ecm and mml. In: Wang P, Singh M, Apté C, Perner P (eds) Pattern recognition and data mining, third international conference on advances in pattern recognition, ICAPR 2005, Bath, UK, August 22–25, 2005, proceedings, Part I, vol 3686. Springer, pp 172–182

  10. Bouguila N, Ziou D, Monga E (2006) Practical bayesian estimation of a finite beta mixture through gibbs sampling and its applications. Stat Comput 16(2):215–225

    Article  MathSciNet  Google Scholar 

  11. Bourouis S, Hamrouni K (2010) 3d segmentation of MRI brain using level set and unsupervised classification. Int J Image Graph 10(1):135–154

    Article  MathSciNet  Google Scholar 

  12. Bourouis S, Hamrouni K, Betrouni N (2008) Automatic MRI brain segmentation with combined atlas-based classification and level-set approach. In: 5th International conference, ICIAR 2008 image analysis and recognition, Póvoa de Varzim, Portugal, June 25–27, 2008. Proceedings, pp 770–778

  13. Bourouis S, Al Mashrgy M, Bouguila N (2014) Bayesian learning of finite generalized inverted dirichlet mixtures: application to object classification and forgery detection. Exp Syst Appl 41(5):2329–2336

    Article  Google Scholar 

  14. Bourouis S, Zaguia A, Bouguila N, Alroobaea R (2019) Deriving probabilistic SVM kernels from flexible statistical mixture models and its application to retinal images classification. IEEE Access 7:1107–1117

    Article  Google Scholar 

  15. Boutemedjet S, Bouguila N, Ziou D (2007) Feature selection for non gaussian mixture models. In: 2007 IEEE workshop on machine learning for signal processing. IEEE, pp 69–74

  16. Chan TF, Vese LA (2001) Active contours without edges. IEEE Trans Image Process 10(2):266–277

    Article  Google Scholar 

  17. Channoufi I, Bourouis S, Bouguila N, Hamrouni K (2018) Color image segmentation with bounded generalized gaussian mixture model and feature selection. In: 4th International conference on advanced technologies for signal and image processing, ATSIP 2018, Sousse, Tunisia, March 21–24, 2018, pp 1–6

  18. Channoufi I, Bourouis S, Bouguila N, Hamrouni K (2018) Image and video denoising by combining unsupervised bounded generalized gaussian mixture modeling and spatial information. Multimed Tools Appl 77(19):25591–25606

    Article  Google Scholar 

  19. Channoufi I, Najar F, Bourouis S, Azam M, Halibas AS, Alroobaea R, Al-Badi A (2020) Flexible statistical learning model for unsupervised image modeling and segmentation. Springer International Publishing, Berlin, pp 325–348

    MATH  Google Scholar 

  20. Cong Y, Wang S, Liu J, Cao J, Yang Y, Luo J (2015) Deep sparse feature selection for computer aided endoscopy diagnosis. Pattern Recognit 48(3):907–917

    Article  Google Scholar 

  21. Cuevas C, Yáñez EM, García N (2016) Labeled dataset for integral evaluation of moving object detection algorithms: Lasiesta. Comput Vis Image Underst 152:103–117

    Article  Google Scholar 

  22. Darolti C, Mertins A, Bodensteiner C, Hofmann UG (2008) Local region descriptors for active contours evolution. IEEE Trans Image Process 17 (12):2275–2288

    Article  MathSciNet  Google Scholar 

  23. Dzyubachyk O, Van Cappellen WA, Essers J, Niessen WJ, Meijering E (2010) Advanced level-set-based cell tracking in time-lapse fluorescence microscopy. IEEE Trans Med Imaging 29(3):852–867

    Article  Google Scholar 

  24. Falco ID, Pietro GD, Cioppa AD, Sannino G, Scafuri U, Tarantino E (2018) Preliminary steps towards efficient classification in large medical datasets: structure optimization for deep learning networks through parallelized differential evolution. In: 11th International joint conference on biomedical engineering systems and technologies (BIOSTEC), pp 633–640

  25. Figueiredo MAT, Jain AK (2002) Unsupervised learning of finite mixture models. IEEE Trans Pattern Anal Mach Intell 24(3):381–396

    Article  Google Scholar 

  26. Freixenet J, Muñoz X, Raba D, Martí J, Cufí X (2002) Yet another survey on image segmentation: region and boundary information integration. In: Heyden A, Sparr G, Nielsen M, Johansen P (eds) Computer vision - ECCV 2002, 7th European conference on computer vision, copenhagen, Denmark, May 28-31, 2002, proceedings, Part III, vol 2352. Springer, pp 408–422

  27. Friedman J, Hastie T, Tibshirani R (2001) The elements of statistical learning, vol 1. Springer series in statistics. New York

  28. Gao Z, Wang D, Wan S, Zhang H, Wang Y (2019) Cognitive-inspired class-statistic matching with triple-constrain for camera free 3d object retrieval. Future Gener Comput Syst 94:641–653

    Article  Google Scholar 

  29. Gao Z, Xue H, Wan S (2020) Multiple discrimination and pairwise CNN for view-based 3d object retrieval. Neural Netw 125:290–302

    Article  Google Scholar 

  30. Girshick RB (2015) Fast R-CNN. In: 2015 IEEE international conference on computer vision, ICCV 2015, Santiago, Chile, December 7–13, 2015, pp 1440–1448

  31. Girshick RB, Donahue J, Darrell T, Malik J (2014) Rich feature hierarchies for accurate object detection and semantic segmentation. In: CVPR, pp 580–587

  32. Huang J, Kumar SR, Mitra M, Zhu WJ, Zabih R (1997) Image indexing using color correlograms. In: 1997 IEEE computer society conference on computer vision and pattern recognition, 1997. Proceedings. IEEE, pp 762–768

  33. Ilyasova N, Paringer R, Kupriyanov A, Kirsh D (2017) Intelligent feature selection technique for segmentation of fundus images. In: 2017 Seventh international conference on innovative computing technology (INTECH), pp 138–143

  34. Jackowski K, Cyganek B (2017) A learning-based colour image segmentation with extended and compact structural tensor feature representation. Pattern Anal Appl 20(2):401–414

    Article  MathSciNet  Google Scholar 

  35. Junfeng L, Jinwen M (2016) Effective selection of mixed color features for image segmentation. In: 2016 IEEE 13th international conference on signal processing (ICSP), pp 794–798

  36. Law MH, Figueiredo MA, Jain AK (2004) Simultaneous feature selection and clustering using mixture models. IEEE Trans Pattern Anal Mach Intell 26 (9):1154–1166

    Article  Google Scholar 

  37. Li Y, Guo L (2008) TCM-KNN scheme for network anomaly detection using feature-based optimizations. In: Proceedings of the 2008 ACM symposium on applied computing (SAC), Fortaleza, Ceara, Brazil, March 16–20, 2008, pp 2103–2109

  38. Li Z, Tang J (2015) Unsupervised feature selection via nonnegative spectral analysis and redundancy control. IEEE Trans Image Process 24(12):5343–5355

    Article  MathSciNet  Google Scholar 

  39. Li Z, Liu J, Yang Y, Zhou X, Lu H (2014) Clustering-guided sparse structural learning for unsupervised feature selection. IEEE Trans Knowl Data Eng 26(9):2138–2150

    Article  Google Scholar 

  40. Lin T, Maire M, Belongie SJ, Hays J, Perona P, Ramanan D, Dollár P, Zitnick CL (2014) Microsoft COCO: common objects in context. In: 13th European conference ECCV, pp 740–755

  41. Lin T, Dollár P, Girshick RB, He K, Hariharan B, Belongie SJ (2017) Feature pyramid networks for object detection. In: IEEE Conference on computer vision and pattern recognition, CVPR, pp 936–944

  42. Lindblom J, Samuelsson J (2003) Bounded support gaussian mixture modeling of speech spectra. IEEE Trans Speech Audio Process 11(1):88–99

    Article  Google Scholar 

  43. Liu W, Anguelov D, Erhan D, Szegedy C, Reed SE, Fu C, Berg AC (2016) SSD: single shot multibox detector. In: Computer vision—ECCV 2016—14th European conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part I, pp 21–37

  44. Maire M, Arbelaez P, Fowlkes CC, Malik J (2008) Using contours to detect and localize junctions in natural images. In: 2008 IEEE Computer society conference on computer vision and pattern recognition CVPR

  45. Martin D, Fowlkes C, Tal D, Malik J (2001) A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Eighth IEEE international conference on computer vision, 2001. ICCV 2001. Proceedings, vol 2. IEEE, pp 416–423

  46. Maška M, Matula P, Daněk O, Kozubek M (2010) A fast level set-like algorithm for region-based active contours. In: International symposium on visual computing. Springer, pp 387–396

  47. McLachlan G, Peel D (2000) Finite mixture models. Wiley, New York

    Book  Google Scholar 

  48. Meignen S, Meignen H (2006) On the modeling of small sample distributions with generalized gaussian density in a maximum likelihood framework. IEEE Trans Image Process 15(6):1647–1652

    Article  MathSciNet  Google Scholar 

  49. Mignotte M (2010) A label field fusion bayesian model and its penalized maximum rand estimator for image segmentation. IEEE Trans Image Process 19 (6):1610–1624

    Article  MathSciNet  Google Scholar 

  50. Mumford D, Shah J (1989) Optimal approximations by piecewise smooth functions and associated variational problems. Commun Pure Appl Math 42(5):577–685

    Article  MathSciNet  Google Scholar 

  51. Najar F, Bourouis S, Bouguila N, Belghith S (2017) A comparison between different gaussian-based mixture models. In: 14th IEEE/ACS International conference on computer systems and applications, AICCSA 2017, Hammamet, Tunisia, October 30–Nov. 3, 2017, pp 704–708

  52. Najar F, Bourouis S, Zaguia A, Bouguila N, Belghith S (2018) Unsupervised human action categorization using a riemannian averaged fixed-point learning of multivariate GGMM. In: Image analysis and recognition - 15th international conference, ICIAR, pp 408–415

  53. Najar F, Bourouis S, Bouguila N, Belghith S (2019) Unsupervised learning of finite full covariance multivariate generalized gaussian mixture models for human activity recognition. Multimed Tools Appl 78(13):18669–18691

    Article  Google Scholar 

  54. Najar F, Bourouis S, Bouguila N, Belghith S (2020) A new hybrid discriminative/generative model using the full-covariance multivariate generalized gaussian mixture models. Soft Comput 24(14):10611–10628

    Article  Google Scholar 

  55. Oussalah M, Shabash M (2012) Object tracking using level set and mpeg 7 color features. In: 2012 3rd International conference on image processing theory, tools and applications (IPTA). IEEE, pp 105–110

  56. Pi M (2006) Improve maximum likelihood estimation for subband ggd parameters. Pattern Recognit Lett 27(14):1710–1713

    Article  Google Scholar 

  57. Redmon J, Farhadi A (2017) YOLO9000: better, faster, stronger. In: 2017 IEEE Conference on computer vision and pattern recognition, CVPR 2017, Honolulu, HI, USA, July 21–26, 2017, pp 6517–6525

  58. Redmon J, Divvala SK, Girshick RB, Farhadi A (2016) You only look once: unified, real-time object detection. In: IEEE Conference on computer vision and pattern recognition, CVPR, pp 779–788

  59. Sethian J (1999) Level set methods and fast marching methods: evolving interfaces in geometry, fluid mechanics, computer vision, and materials science, 2nd edn. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  60. Szczypiński P, Klepaczko A, Pazurek M, Daniel P (2014) Texture and color based image segmentation and pathology detection in capsule endoscopy videos. Computer Methods Progr Biomed 113(1):396–411

    Article  Google Scholar 

  61. Tychsen-Smith L, Petersson L (2017) Denet: scalable real-time object detection with directed sparse sampling. In: 2017 IEEE International conference on computer vision (ICCV). IEEE, pp 428–436

  62. Wallace CS (2005) Statistical and inductive inference by minimum message length. Springer Science & Business Media

  63. Wang J, Jiang H, Yuan Z, Cheng M, Hu X, Zheng N (2017) Salient object detection: a discriminative regional feature integration approach. Int J Comput Vis 123(2):251–268

    Article  Google Scholar 

  64. Zhang K, Zhang L, Song H, Zhou W (2010) Active contours with selective local or global segmentation: a new formulation and level set method. Image Vis Comput 28(4):668–676

    Article  Google Scholar 

  65. Zhang K, Zhang L, Yang MH (2013) Real-time object tracking via online discriminative feature selection. IEEE Trans Image Process 22 (12):4664–4677

    Article  MathSciNet  Google Scholar 

  66. Zhang K, Zhang L, Yang MH, Hu Q (2013) Robust object tracking via active feature selection. IEEE Trans Circ Syst Video Technol 23(11):1957–1967

    Article  Google Scholar 

Download references

Acknowledgments

Taif University Researchers Supporting Project number (TURSP-2020/26), Taif University, Taif, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sami Bourouis.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bourouis, S., Channoufi, I., Alroobaea, R. et al. Color object segmentation and tracking using flexible statistical model and level-set. Multimed Tools Appl 80, 5809–5831 (2021). https://doi.org/10.1007/s11042-020-09809-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-020-09809-2

Keywords

Navigation